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Abstract

As the most rigid cytoskeletal filaments, microtubules bear compressive forces in living cells, balancing the tensile forces within the

cytoskeleton to maintain the cell shape. It is often observed that, in living cells, microtubules under compression severely buckle into

short wavelengths. By contrast, when compressed, isolated microtubules in vitro buckle into single long-wavelength arcs. The critical

buckling force of the microtubules in vitro is two orders of magnitude lower than that of the microtubules in living cells. To explain this

discrepancy, we describe a mechanics model of microtubule buckling in living cells. The model investigates the effect of the surrounding

filament network and the cytosol on the microtubule buckling. The results show that, while the buckling wavelength is set by the

interplay between the microtubules and the elastic surrounding filament network, the buckling growth rate is set by the viscous cytosol.

By considering the nonlinear deformation of the buckled microtubule, the buckling amplitude can be determined at the kinetically

constrained equilibrium. The model quantitatively correlates the microtubule bending rigidity, the surrounding filament network

elasticity, and the cytosol viscosity with the buckling wavelength, the buckling growth rate, and the buckling amplitude of the

microtubules. Such results shed light on designing a unified experimental protocol to measure various critical mechanical properties of

subcellular structures in living cells.

r 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

The mechanical properties of a cell are largely deter-
mined by its cytoskeleton (e.g., Hesketh and Prym, 1995;
Howard, 2001; Boal, 2002), a self-organizing network of
three primary protein filaments: microtubules, intermediate
filaments, and actin filaments. Among the three types of
cytoskeletal filaments, microtubules are the most rigid. The
bending rigidity of microtubules is about 100 times that of
intermediate and actin filaments (Gittes et al., 1993;
Howard, 2001). Microtubules are hollow cylindrical tubes
that are made of a–b tubulin heterodimers assembled into
protofilaments (e.g., Hesketh and Prym, 1995). The rigid
microtubules in living cells bear compressive forces,
balancing tensile forces carried by the compliant actin
and intermediate filaments—forming a synergic ‘‘skeleton’’
to stabilize the cell shape (Wang et al., 1993; Ingber, 1997;
e front matter r 2008 Elsevier Ltd. All rights reserved.
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Maniotis et al., 1997; Stamenovic et al., 2002). Such a
concept is referred to as the ‘‘tensegrity’’ model, first
introduced by Ingber in 1997.
A microtubule buckles when subjected to a sufficiently

large axial compressive force. The microtubule buckling
has been observed in various types of living cells (Odde et
al., 1999; Heidemann et al., 1999; Wang et al., 2001;
Brangwynne et al., 2006), resulting from stimulated or
spontaneous cell contraction, or constrained microtubule
polymerization at the cell periphery. In some in vitro

studies, the buckling has also been observed in micro-
tubules encapsulated in vesicles (Elbaum et al., 1996;
Fygenson et al., 1997), or in isolated microtubules under
axial compressive forces generated by the kinesin motors
(Gittes et al., 1996) or by the external optical tweezers
(Kurachi et al., 1995; Kikumoto et al., 2006).
The microtubule buckling behaviors in living cells and

in vitro are substantially different. Although the persistence
length of microtubules (1–6mm) is tens of times larger than
the typical size of a cell (Pampaloni et al., 2006), the
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microtubule buckling in living cells often occurs at short
wavelengths (e.g., several mm), suggesting that these
microtubules bear large compressive forces (�100 s pN)
(Wang et al., 2001; Brangwynne et al., 2006). However,
in vitro studies suggest that isolated microtubules buckle
into single long arcs (analogous to the buckling of a straw
in the air when both of its ends are compressed). These
microtubules in vitro are shown to bear exceedingly small
compressive forces (�1 pN) (Volokh et al., 2000; Dogterom
et al., 2005). The critical buckling force characterizes the
capability of microtubules to stabilize the cell shape.
The huge difference in the buckling wavelength as well as
the critical buckling forces of the microtubules in living
cells and those in vitro leaves the structural role of
microtubules elusive.

There have been numerous theoretical and experimental
studies on the mechanics of microtubules recently, e.g.,
elastic buckling (Brodland and Gordon, 1990; Kurachi
et al., 1995; Elbaum et al., 1996; Coughlin and Stamenovic,
1997; Wang et al., 2001., 2006; Brangwynne et al., 2006),
morphological instability (Janson et al., 2003; Molodtsov
et al., 2005; Grishchuk et al., 2005), and free vibration
(Sirenko et al., 1996; Portet et al., 2005). While models at
atomistic and molecular scales have shed important light
on understanding the mechanical properties of detail
microtubule nanostructure (Molodtsov et al., 2005; Tus-
zynski et al., 2005), continuum elastic beam models have
been often used to study the deformation behavior of
whole microtubules (Kurachi et al., 1995; Fygenson et al.,
1997; Wang et al., 2006; Brangwynne et al., 2006). For
example, Euler beam theory has been used to determine the
microtubule critical buckling force. Insights from the
atomistic and molecular scale studies of microtubules have
also been embedded into continuum models to reflect the
nanostructure-related mechanical properties, e.g., the
elastic anisotropy (Tuszynski et al., 2005; Pampaloni
et al., 2006). Some mechanics models on microtubule
buckling consider free microtubules (e.g., Elbaum et al.,
1996; Fygenson et al., 1997), without taking into account
of the effect of the surrounding cytoplasm. As a result, such
a free microtubule always buckles into a single long arc and
the predicted critical buckling force is exceedingly small
(�1 pN), suggesting an insignificant structural role of
microtubules in living cells. Brodland and Gordon (1990)
first proposed a model of microtubule buckling constrained
by the elastic intermediate filaments and showed that the
reinforcing filaments prevent the long-wavelength buckling
of microtubules. Their model was then extended using the
post-buckling equilibrium theory to study the microtubule
buckling in cultured smooth muscle cells (Stamenovic
et al., 2002). This extended model predicted an average
critical buckling force of microtubules of �27 pN in those
cells. A more recent study (Brangwynne et al., 2006)
showed that the microtubules in living cells do bear large
compressive forces (�100 pN) by buckling into short
wavelengths. It is suggested that the short-wavelength
buckling results from the mechanical coupling between the
microtubules and the surrounding elastic filament network.
Such a model was further adopted to explain the short-
wavelength buckling of microtubule bundles driven by
polymerization forces (Guo et al., 2007).
In living cells, the rigid microtubules are surrounded not

only by the soft elastic filament network, but also by the
viscous cytosol. The microtubule buckling causes not only
the elastic deformation of the filament network, but also
the viscous flow of the cytosol. In turn, these two processes
result in an external stress field that influences the
microtubule buckling mode and kinetics. For example,
the microtubule buckling at long wavelength requires
viscous mass transportation of the cytosol over long
distance, which is unlikely to occur incipiently. Above
said, to understand the microtubule buckling behavior in
living cells, it is essential to investigate the coupled effect of
the elastic filament network and the viscous cytosol.
To address the abovementioned controversy in the

structural role of microtubules in living cells, this paper
describes a mechanics model of microtubule buckling,
considering the coupled effect of the viscoelastic surround-
ing cytoplasm. The model quantitatively correlates the
microtubule bending rigidity, the surrounding filament
network elasticity, and the cytosol viscosity with the
buckling wavelength, the buckling growth rate, and the
buckling amplitude of the microtubules. Such quantitative
results can be potentially used to design a unified
experimental protocol to measure various critical subcel-
lular mechanical properties in living cells.

2. Mechanics model

Consider an initially straight, elastic microtubule, subject
to an axial compression f0, in a viscoelastic surrounding of
elastic modulus of EC and viscosity of m (the combined
effect of surrounding filament network and cytosol). The
microtubule is modeled as an infinitely long cylinder of
radius R0, with a bending rigidity EI equivalent to that of
the actual hollow microtubule. The incipient microtubule
buckling under the compression f0 is introduced as a
sinusoidal perturbation of the center line of the micro-
tubule, of wavelength 2p/k and amplitude
w(z,t) ¼ w(t)sin(kz) (Fig. 1a). We next determine the
further growth of the incipient buckling by solving the
elastic deformation of the microtubule and the surrounding
filament network, as well as the resulting viscous flow of
the cytosol. The elastic deformation and the viscous flow
are then coupled through the interface between the
microtubule and the surrounding cytoplasm, where the
displacements and the tractions are assumed to be
continuous.

2.1. Elastic deformation of the microtubule and the

surrounding filament network

Upon incipient buckling of the microtubule, the sur-
rounding filament network is deformed. In turn, the elastic
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Fig. 1. (a) Schematic of an initially straight microtubule in the viscoelastic

surrounding cytoplasm. Under an axial compression f0, the microtubule

incipiently buckles into a sinusoidal shape of amplitude w(t)sin(kz).

(b) The cross-section view of the microtubule in the cytoplasm. The solid

and dotted circles at the center represent microtubule’s original position

and its position at the incipient buckling, respectively. v0 is the velocity of

the microtubule in the incipient buckling direction. vr and vy are the

velocity components of the buckling-induced viscous flow of the cytosol.
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filament network exerts a distributed surface traction
on the microtubule in the opposite direction of the
incipient buckling. The total resultant lateral surface
traction on the microtubule can be determined by the
Euler beam theory:

F e ¼ �EI
q4wðz; tÞ

qz4
� f 0

q2wðz; tÞ
qz2

� zwðz; tÞ, (1)

where zE2.7EC (Landau and Lifshitz, 1986; Bazant and
Cedolin, 1991). The three terms in Eq. (1) represent the
contributions from the microtubule bending, the axial
compression, and the elastic constraint from the surround-
ing filament network, respectively. Given that
w(z,t) ¼ w(t)sin(kz), we have

F e ¼ �ðEIk
4
� f 0k2

þ zÞwðtÞ sin ðkzÞ. (2)

Note that the surface traction Fe on the microtubule is
linearly proportional to the incipient buckling amplitude
w(t).

2.2. Viscous flow of the cytosol

The incipient buckling of the microtubule also results in
the viscous flow of the cytosol. The motion equation of
such a viscous flow is

sij;j ¼ 0, (3)
where sij is the stress tensor of the cytosol. The inertia term
is neglected in Eq. (3) since the induced cytosol flow is
assumed to be slow. We assume a Newtonian deformation
law of the viscous cytosol. Thus the stress components
relate to the velocities by

sij ¼ mðvi;j þ vj;iÞ � pdij , (4)

where vi is the velocity components, dij is the Kronecker
delta, and p ¼ �1

3
skk.

The continuity equation of the incompressible viscous
flow is

vi;i ¼ 0. (5)

Assuming a no-slip condition at the interface between
the microtubule and the cytoplasm, the velocities of the
cytosol at the interface is given by

vrðR0; yÞ ¼ v0 sin ðkzÞ cos y,

vyðR0; yÞ ¼ v0 sin ðkzÞ sin y, (6)

where v0 is the velocity of the microtubule in the incipient
buckling direction, and y is the azimuthal angle relative to
the plane in which the incipient buckling occurs (Fig. 1b).
The induced viscous flow of the cytosol decays spatially
away from the microtubule and vanishes at a certain
distance R1 from the center line of the microtubule (e.g.,
about the half spacing between adjacent microtubules),
that is,

vrðR1; yÞ ¼ vyðR1; yÞ ¼ 0. (7)

The above boundary value problem (i.e., Eqs. (3)–(7))
can be solved analytically to determine the stress field of
the induced viscous flow in the cytosol (see Appendix A for
details). By integrating the stress field along the micro-
tubule/cytoplasm interface, the surface traction of the
cytosol along the interface can be given by

Fv ¼ pmwv0 sin ðkzÞ, (8)

where

w ¼
ð1� q4Þ ln q� 12q2 þ 2q4 þ 10

ðq4 � 1Þ ln qþ 2q2 � q4 � 1
and q ¼ R0=R1.

Note the surface traction Fv of the cytosol is linearly
proportional to the velocity of the microtubule v0 in the
incipient buckling direction.

2.3. Coupled elastic deformation and viscous flow

To couple the elastic deformation of the microtubule and
the filament network with the viscous flow of the cytosol,
we assume that the tractions and the displacements are
continuous across the interface, that is,

F e ¼ Fv; v0 ¼
dwðtÞ

dt
. (9)

Substituting Eqs. (2) and (8) into Eq. (9), we have

dwðtÞ

dt
¼ awðtÞ, (10)
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Fig. 2. Schematic of the growth rate of the microtubule incipient buckling

amplitude a as a function of the buckling wave number k. The microtubule

buckling may occur at a range of wave number kcr
�okokcr

+, from which

the wave number kfastest corresponding to the fastest growth rate amax can

be determined.
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where

a ¼ �
EIk4

� f 0k
2
þ z

pmw
. (11)

The solution of Eq. (10) takes the form

wðtÞ ¼ w0 expðatÞ, (12)

where w0 is the initial buckling amplitude. Such a solution
indicates that the amplitude of the incipient microtubule
buckling will grow (or decay) exponentially at a rate of a.

Fig. 2 schematically plots the buckling growth rate a as a
function of incipient buckling wave number k. Two critical
wave numbers

k�cr ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f 2
0 � 4EIz

q
2EI

vuut
(13)

can be determined at which a ¼ 0. If the wavelength of the
incipient buckling is too long (i.e., kokcr

�) or too short (i.e.,
k4kcr

+), ao0, that is, the incipient buckling of the
microtubule decays, thus eventually the microtubule
straightens up. For an incipient buckling at an intermediate
wavelength (i.e., kcr

�okokcr
+), a40, that is, the incipient

buckling grows, leading to the microtubule buckling of
large amplitude.

The above results can be explained by an energetic
consideration. Buckling of the microtubule results in the
increase in the contour length, thus mitigates the compres-
sive stress in the microtubule, leading to a decrease in the
microtubule elastic energy DUe, thus driving the buckling
to grow. On the other hand, buckling also results in an
increase in the microtubule bending energy DUb, and an
increase of the elastic energy of the surrounding filament
network DUf. For an incipient buckling at a sufficiently
short wavelength (e.g., k4kcr

+), DUb outweighs DUe,
causing the decay of the incipient buckling. Similarly, for
an incipient buckling at a sufficiently long wavelength (e.g.,
kokcr

�), DUf overbalances DUe, also leading to the decay of
the incipient buckling. For an intermediate wavelength
kcr
�okokcr

+, DUe surpasses DUb+DUf, thus the incipient
buckling grows exponentially.
The values of kcr

7 are real only for a compressive force
that exceeds a threshold value of f c ¼ 2

ffiffiffiffiffiffiffiffi
EIz
p

, the critical
Euler buckling force of the microtubule. At such a
threshold compressive force, the two critical wave numbers
are identical kcr ¼ (z/EI)1/4. The wave number correspond-
ing to the fastest buckling growth rate amax is determined
by da/dk ¼ 0. From Eq. (11), such a fastest growing wave
number is given by

kfastest ¼

ffiffiffiffiffiffiffiffi
f 0

2EI

r
. (14)

The predicted microtubule buckling wave number in
Brangwynne et al. (2006) corresponds to the special case of
f0 ¼ fc.

2.4. Wavelength and growth rate of the microtubule buckling

Figs. 3a and b plot the normalized buckling growth rate
apmwR0

4/EI as a function of normalized buckling wave
number R0k for various axial compression f0 and
surrounding filament network elasticity EC, respectively.
For a given EC (Fig. 3a), the buckling growth rate a and the
range of possible buckling wave number (kcr

+–kcr
�) increase

as f0 increases. The dotted curve corresponds to the case of
f0 ¼ fc. For a given f0 (Fig. 3b), a and kcr

+–kcr
� increase as EC

decreases. In the limiting case of EC ¼ 0, the incipient
perturbation of any wave number kokcr

+ can grow, but the
growth rate becomes negligible as k tends to zero. Here
we use the reported microtubule bending rigidity
EI ¼ 5� 10�24Nm2 (Felgner et al., 1996), elastic modulus
E ¼ 2GPa, R0 ¼ 12.5 nm (Howard, 2001).
Fig. 4 plots the normalized fastest buckling growth rate

amaxpmwR0
4/EI as a function of the normalized axial

compression f0R0
2/EI for various surrounding filament

network elasticity EC. For a given EC, amax increases as
f0 increases. For a given f0, amax increases as EC decreases.
The horizontal secant of a given curve in Fig. 4
corresponds to the threshold compression fc.

2.5. Amplitude of the microtubule buckling at kinetically

constrained equilibrium

Given the highly dynamic environment inside living
cells, the buckled microtubules may not have enough
time to reach their thermodynamic equilibrium. For
example, a microtubule that buckles at a short wavelength
can have an elastic energy higher than that at the
thermodynamic equilibrium. But such a microtubule
may stay at that buckled shape with certain amplitude
for a long time due to the kinetic constrain of the viscous
cytoplasm. We next determine the amplitude of the
microtubule buckling at such a kinetically constrained
equilibrium Aeq.
At such an equilibrium, the viscous flow of the cytosol

stops, therefore the interface tractions vanish. Euler beam
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theory gives

EI
d4wðzÞ

dz4
þ f

d2wðzÞ

dz2
þ zwðzÞ ¼ 0, (15)

where f is the total axial compression in the microtubule at
the kinetically constrained equilibrium. By assuming
w(z) ¼ Aeqsin(kz), Eq. (15) gives

f ¼ EIk2
þ

z

k2
. (16)

The total axial compression f can be decomposed into
two parts:

f ¼ f 0 þ f extra, (17)

where fextra is the extra compression due to the nonlinear
axial strain in the microtubule under large amplitude
buckling. The axial component of the nonlinear Green
strain (Landau and Lifshitz, 1986; Timoshenko and
Woinowsky-Krieger, 1987) is defined by

�z ¼
quz

qz
þ

1

2

qwðzÞ

qz

� �2

, (18)

where uz is the axial deformation of the microtubule. An
elasticity consideration of the microtubule then gives

f extra ¼
ESð1� nÞ
ð1� 2nÞð1þ nÞ

quz

qz
þ

1

2

qwðzÞ

qz

� �2
 !

, (19)

where v and S are Poisson’s ratio and the cross-section area
of the microtubule, respectively. Since the tractions along
the microtubule/cytoplasm interface vanish at the kineti-
cally constrained equilibrium, the axial force f0 in the
microtubule should be independent of z. From Eqs. (17)
and (19), we have

uz ¼ �
1

8
kA2

eq sin ð2kzÞ. (20)

Eq. (19) then becomes

f extra ¼
ESk2A2

eqð1� nÞ

4ð1� 2nÞð1þ nÞ
. (21)

Substituting Eqs. (16) and (21) into Eq. (17), we have

Aeq ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
4ð1� 2nÞð1þ nÞðEIk2

þ x=k2
� f 0Þ

ð1� nÞESk2

s
. (22)

Figs. 5a and b plot the normalized microtubule buckling
amplitude at the kinetically constrained equilibrium Aeq/R0

as a function of the normalized buckling wave number
R0k for various f0 and EC, respectively. For a given EC

(Fig. 5a), Aeq increases as f0 increases. The intersections of
each curve with the horizontal axis correspond to kcr

7. For a
given f0 (Fig. 5b), Aeq increases as EC decreases. In the
limiting case of EC ¼ 0, the buckling amplitude of the
microtubule may grow without boundary. For EC40,
the maximum buckling amplitude at the kinetically
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constrained equilibrium occurs at a wavelength longer than
that corresponding to amax. Here we use the reported
Poisson’s ratio for macromolecules v ¼ 0.3 (Sirenko et al.,
1996).

3. Discussion

The microtubule buckling in living cells is constrained by
both the elastic surrounding filament network and the
viscous cytosol. While the elastic properties of the
microtubule and the surrounding filament network define
the critical buckling force, the viscosity of the cytosol sets
how fast the buckling develops. The interplay between the
buckled microtubule and the viscoelastic surrounding
parallels that between a wrinkled elastic film and the
underlying viscoelastic substrate (Huang and Suo, 2002;
Huang, 2005). Under an axial compressive force larger
than the critical buckling force, a microtubule may buckle
into a wide range of wavelengths, and the buckling
amplitude in any wavelength in this range can be
determined at the kinetically constrained equilibrium.
While the microtubule buckling may occur at a wide range
of wavelengths, it is likely that the wavelength correspond-
ing to the fastest growth rate sets the final buckled shape of
the microtubule. For example, in Fig. 3a, such a
wavelength is predicted to be 2.6, 2.2 and 1.8 mm for a
microtubule subject to an axial compression of 232, 350
and 500 pN, respectively. These predicted microtubule
buckling wavelengths are in good agreement with the
observed buckling wavelengths (2.870.6 mm) of the micro-
tubules in Cos7 epithelial cells and bovine capillary
endothelial cells under exogenous compressive forces
(Brangwynne et al., 2006).

Existing methods to measure subcellular mechanical
properties vary for different subcellular structures. For
example, the microtubule bending rigidity EI has been
measured via thermal fluctuation (Gittes et al., 1993;
Mickey and Howard, 1995; Janson and Dogterom, 2004),
atomic force microscopy (de Pablo et al., 2003; Kis et al.,
2002; Schaap et al., 2004), and optical tweezers (Kurachi
et al., 1995; Felgner et al., 1996; Kikumoto et al., 2006). The
viscoelastic properties of the cytoplasm can be measured by
the microrheology techniques (e.g., Deng et al., 2006). The
mechanical interactions among different subcellular struc-
tures are often not considered in measuring individual
components. The present model quantitatively correlates
critical subcellular mechanical properties, such as EC, m
and EI with easy-to-measure microtubule buckling char-
acteristics (e.g., amax, Aeq and kfastest). Therefore, this model
sheds light on designing a unified experimental protocol to
measure various mechanical properties of subcellular
structures. For example, Fig. 5 can be used to measure
EC if f0 is given (e.g., by manipulating a microtubule
through an optical trapping force). With EC measured,
Figs. 3 and 4 can then be used to determine m and EI.
The mechanical properties of real microtubules are

orthotropic, while the present model assumes the micro-
tubule isotropic. A recent study showed that the isotropic
elastic column model of the microtubules agrees well with
the orthotropic shell model for axial buckling of very long
microtubules (Wang et al., 2006). The present model
assumes the linear response of the elastic surrounding
filament network and the Newtonian viscosity of the
cytosol. Under large amplitude microtubule buckling, the
elastic constraint of the filament network may become
nonlinear with the buckling amplitude, and the velocity
gradients of the cytosol flow are large near the highly
buckled microtubule. Given these considerations, the
microtubule buckling amplitudes at the kinetically con-
strained equilibrium predicted in Section 2.5 may under-
estimate the actual microtubule buckling amplitude. The
nonuniform surrounding filament network can cause the
localized microtubule bending (Brangwynne et al., 2006).
These factors will also influence the microtubule buckling
(e.g., resulting in larger buckling amplitudes). A three-
dimensional model considering nonlinear elastic filament
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network and nonlinear viscous cytosol will be necessary to
accurately capture the deformation characteristics of severe
microtubule buckling in living cells. We will report further
studies on such aspects elsewhere.

In conclusion, a mechanics model is developed to study
the microtubule buckling in living cells modulated by the
surrounding viscoelastic cytoplasm. The short-wavelength
buckling behavior predicted by the present model is in
good agreement with recent experimental data. We call for
further experiments based on this quantitative model to
explore a unified protocol to measure various subcellular
mechanical properties in living cells.
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Appendix 

The incipient viscous flow of the cytosol can be assumed to be in the plane strain 

deformation state in the r-θ plane (Fig. 1b).  The 2-D motion equations in the r-θ plane reduce to 
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whereas the continuity equation takes the form 
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By introducing a stream function ψ , that is, 
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Assuming the stream function in the form )sin(sin)( kzrg θψ = , Eq. (28) reduces to 
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whose solution takes the form 
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where A, B, C and D are coefficients to be determined. 

Substituting Eq. (30) into Eq. (26), we have 
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By substituting Eqs. (31) and (32) into the boundary conditions (i.e., Eqs. (6) and (7)), the 

coefficients A, B, C and D can be solved as 

 
)ln)1(1)(1(

ln
222

2
0

qqqq
qqvA
++−−

−
= ,  (33)   

 
)ln)1(1)(1(

))1ln2)(1(ln2(
222

1
22

00

qqqq
RqqRvB

++−−
+−+

= ,  (34) 

  
)ln)1(1)(1(

)ln1(
2222

22
1

2
00

qqqqq
qqRRvC

++−−
−−

= ,  (35)   

 
)ln)1(1)(1( 222

2
0

qqqq
qvD

++−−
−

= ,  (36) 

where 10 / RRq = . 

The stress components of the cytosol at the microtubule/cytoplasm interface can be then 

obtained by substituting Eqs. (31)-(36) into Eq. (4), 
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The surface traction of the cytosol along the interface can be obtained by integrating the 
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stress field, 
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