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Competing failure mechanisms of thin metal films on polymer substrates
under tension
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Abstract The ductility of thin metal films on polymer substrates reported in recent experiments has
a huge disparity, ranging from less than 1 % up to more than 50 %. To reveal the underpinning origins
for such a large variation, this paper reports a systematic computational study of two competing
failure mechanisms: metal film necking and grain boundary cracking. The quantitative results
suggest that strong grain boundaries and metal/polymer interfacial adhesion are keys to achieve high
ductility of polymer-supported metal films. c© 2011 The Chinese Society of Theoretical and Applied
Mechanics. [doi:10.1063/2.1104102]
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Rising interests in flexible electronics in recent
years have been motivated by the promising future
of its potential applications including paper-like dis-
plays, printable thin-film solar cells, and skin-like
smart prostheses.1–3 Such flexible devices will undergo
large and repeated stretches, bends and twists dur-
ing service, therefore require large deformability of
device components (e.g., metal interconnects). Thin
metal films deposited on polymer substrates are widely
used as interconnections and electrodes in flexible de-
vices. Interestingly, the reported failure strains of
these polymer-supported thin metal films under ten-
sion have a huge disparity, ranging from less than 1 %
up to more than 50 %.4–14 Such a huge disparity has
been accounted for various mechanisms (e.g., metal film
necking, film/substrate debonding, and grain bound-
ary cracking) and parameters (substrate stiffness, film
thickness, metal grain size, etc.).9,14–20 So far, the stud-
ies into the effects of these mechanisms and parameters
on the large variation of the metal films ductility are
suggestive, but not yet systematic. In particular, while
the ductility of a polymer-supported metal film is often
governed by various competing failure mechanisms, the
interplay among these failure mechanisms is far from
well understood. To address such an issue, this pa-
per reports a systematic computational study on three
major failure mechanisms of thin metal films on poly-
mer substrates (i.e., metal film necking, grain boundary
cracking and interfacial debonding), with particular ef-
fort on deciphering their competing nature.

Recent experiments and modeling have shed light
on the origins of the large variation in the ductility
of thin metal films on polymer substrates. Computa-
tional modeling predicts that the film/substrate inter-
facial adhesion plays a crucial role in determining the
ductility of polymer supported thin metal films.18,20

Under a modest tension, a weakly-adhered metal film
can debond from the substrate; the film becomes free-
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standing and is free to form a neck, resulting in low
ductility. By contrast, a metal film well adherent to
a polymer substrate should sustain strains exceeding
80 %. Such a prediction has recently been verified by the
tensile tests of thin Cu films on polyimide substrates,
in which Cu films well bonded to polyimide substrates
can sustain tensile strain above 50 % without fracture,
while those poorly bonded to polyimide substrates frac-
ture at strains about 2 %.8,10 Both simulations and ex-
periments confirm the co-evolution of metal film neck-
ing and film/substrate interfacial debonding when the
film/substrate laminate is under tension.10,12,18 Fur-
thermore, deformation-associated grain growth in the
metal films12,21 has been shown to facilitate the metal
film necking. Recent experiments also reveal mixed
failure mechanisms of both ductile necking and brittle
inter-granular cracking in thin metal films on polymer
substrates under tension (Fig. 1).8 Further simulations
on the inter-granular cracking of thin metal films on
polymer substrates showed that the rupture strain is
also modulated by the grain boundary adhesion and the
grain size of the thin metal films.19

In general, three types of failure mechanisms are ob-
served in tensile tests of a polymer-supported thin metal
film: metal film necking, cracking along metal grain
boundaries, and film/substrate interfacial debonding.
Necking of the thin metal film mainly results from plas-
tic deformation, thus is volume-conserved. In other
words, thinning of the metal film leads to an elongation
in the tensile direction. By contrast, grain boundary
cracking in the metal film involves breaking an array
of atomic bonds along the grain boundary, thus only
leads to negligible elongation of the metal film. In this
sense, the ductile metal film necking is beneficial while
the brittle grain boundary cracking is detrimental for
achieving high ductility of the metal film. These two
competing failure mechanisms can in turn be further
modulated by film/substrate interfacial debonding. For
example, the debonded part of the metal film becomes
freestanding and is more susceptible to necking or grain
boundary cracking, resulting in lower ductility.
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Fig. 1. Scanning electron microscopy image of two neigh-
boring microcracks in an initially continuous thin Cu film
(170 nm thick) on a polyimide substrate (125 µm thick)
when stretched to 30 %. The microcracks form by a mix-
ture of two competing failure mechanisms: metal film neck-
ing and grain boundary cracking. (After Fig. 4(c) in Ref. 8).

Experiments suggest that the fracture of polymer-
supported thin metal films is governed by the inter-
play among these competing failure mechanisms8 (e.g.,
Fig. 1), with quantitative correlation remaining elusive.
Existing modeling studies, however, consider these com-
peting failure mechanisms separately, by assuming ei-
ther perfect grain boundary adhesion or perfect inter-
facial adhesion.18,19 It is desirable to conduct system-
atic studies to explore the interplay between these com-
peting failure mechanisms from which the parameters
underpinning the ductility of polymer-supported thin
metal films can be quantitatively determined. We re-
port systematic finite element simulations of the tensile
behaviors of thin metal films on polymer substrates in
which various combinations of grain boundary adhesion
and interfacial adhesion are explored.

Figure 2(a) depicts the simulation model. For sim-
plification, we consider an idealized case of a polymer-
supported thin blanket metal film of only one grain
along its thickness direction (e.g., a very thin metal
film with columnar grains) subjected to uniaxial ten-
sion. All grains in the metal film are assumed to have
the same size along the tensile direction; the intergran-
ular cracking occurs along grain boundaries perpendic-
ular to the tensile direction (all other grain boundaries
are not subjected to cracking, thus are not considered in
the simulations). The metal/polymer laminate is taken
to deform under the plain strain conditions. Taking ad-
vantage of symmetry we model only a unit cell of the
laminate, consisting of two halves of adjacent grains,
the grain boundary in-between and the substrate un-
derneath (Fig. 2(a)). In the simulation model, the film
is a layer of thickness h, and the substrate is a block
of thickness 100 h and length d = 40 h. The horizon-
tal displacement is set to be zero along the centerline

of the laminate, and set to be u/2 along both sides
of the laminate. The quantity u/d defines the applied
strain. To initiate non-uniform deformation of the metal
film, two V-shaped notches, 0.2 h wide and 0.02 h deep,
are placed at the centers of the top surface of the two
neighboring grains (i.e., two top corners in Fig. 2(a))
to introduce imperfection. Both the metal grains and
the polymer are modeled as elastic-plastic solids. Un-
der uniaxial tension, the true stress σ and the natu-
ral strain ε follow the relation: σ = Eε if ε ≤ σY /E;
σ = σY (Eε/σY )N if ε > σY /E, where E is Young’s
modulus, N the hardening exponent, and σY the yield
strength. In the simulations, the following values are
used: E = 100 GPa, N = 0.02, and σY = 100 MPa for
the metal; and E = 8 GPa, N = 0.5 and σY = 50 MPa
for the polymer. These values are representative for Cu
films and polyimide substrates, respectively.

Fig. 2. (a) Schematic diagram of the simulation model: a
unit cell of a blanket thin metal film on a polymer substrate,
subjected to tension; (b) The traction-separation laws used
to model the grain boundary and the metal/polymer inter-
face.

Both the grain boundary and the metal/polymer
interface are modeled as an array of nonlinear springs,
each of which is characterized by a tensile and a shear
traction-displacement law, with six parameters: inter-
facial tensile strength σn and shear strength σs, critical
opening displacement δn and sliding displacement δs,
and the areas under the traction-displacement curves Γn

and Γs (i.e., the normal and shear adhesion energy of the
grain boundary, respectively), as illustrated in Fig. 2(b).
We assume that σn = σs, δn = δs, and Γn = Γs for both
the grain boundary and the metal/polymer interface. In
the rest of the paper, we will use σGB

n,s , δGB
n,s , and ΓGB

n,s to
denote the parameters of the traction-displacement law
for the grain boundary, and σINT

n,s , δINT
n,s , and Γ INT

n,s for
the metal/polymer interface. The grain boundary and
the metal/polymer interface are meshed with four-node
cohesive elements sharing nodes with the neighboring
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Table 1. Interfacial adhesion parameters used in simulations

Interfacial
adhesion

σINT
n,s /MPa

σGB
n,s/δGB

n,s

/(MPa · nm−1)
ΓGB
n,s /(J ·m−2)

Weak 1 0.2 0.05
Intermediate 50 150 0.3
Strong 100 200 0.5

elements in the film and the substrate. The simulations
are performed using finite element code ABAQUS.

To explore the interplay between the interfacial ad-
hesion and grain boundary adhesion on the ductility of
thin metal films, we first assume low grain boundary
strength and vary the interfacial adhesion, and then as-
sume high grain boundary strength and vary the inter-
facial adhesion. In each case, we determine the rupture
strain and the dominating failure mode of the thin metal
films on polymer substrates.

Table 1 lists the values of σINT
n,s , σINT

n,s /δINT
n,s (inter-

facial stiffness), and Γ INT
n,s used in the simulation to

characterize the weak, intermediate and strong interfa-
cial adhesion, respectively. These values are representa-
tive of a metal/polymer interface with various adhesion
qualities.

Figure 3 plots the failure strains of the thin metal
films on polymer substrates as a function of grain
boundary adhesion energy ΓGB

n,s for weak, intermedi-
ate and strong interfacial adhesion, respectively. Here,
σGB
n,s = 50 MPa and σGB

n,s /δGB
n,s = 100 MPa/nm, denote

low grain boundary strength. Simulating results show
that the thin metal films on polymer substrates rupture
by grain boundary cracking. For a given interfacial ad-
hesion quality, the failure strain increases as the grain
boundary adhesion energy increases, in a roughly linear
manner. For a given grain boundary adhesion energy
ΓGB
n,s , the stronger the interfacial adhesion is, the higher

the failure strain is. Overall, when the grain boundary
strength is low, the failure strain ranges from low to
modest. As depicted in the insets in Fig. 3, when the in-
terfacial adhesion is strong, the thin metal film ruptures
by grain boundary cracking while the metal/polymer
interface remains bonded even though the stress level
in the polymer near the grain boundary crack tip is
rather high. The constraint from the substrate allows
the thin metal film to deform uniformly to a relatively
large strain until the grain boundary crack eventually
opens up and ruptures the metal film. When the inter-
facial adhesion is intermediate, the high stress concen-
tration at the interface near the grain boundary causes
local debonding. The locally debonded thin metal film
facilitates the grain boundary crack opening, leading to
a relatively low rupture strain. When the interfacial
adhesion is weak, the interfacial debonding occurs at
small tensile strain and can easily propagate through
the whole interface, leaving the thin metal film nearly
freestanding. The lack of substrate constraint results in
a rather low rupture strain of the thin metal film due

to grain boundary cracking.

Fig. 3. Failure strain vs. ΓGB
n,s grain boundary adhesion

energy for various interfacial adhesion qualities. Here grain
boundary strength is low (σGB

n,s = 50 MPa). Insets show the
close-up of grain boundary cracking. Color shades denote
von Mises stress. Only partial simulation model is shown.

Figure 4 plots the failure strains of the thin metal
film on polymer substrates as a function of ΓGB

n,s for
weak, intermediate and strong interfacial adhesion, re-
spectively. Here, σGB

n,s = 150 MPa and σGB
n,s /δ

GB
n,s =

100 MPa/nm denote high grain boundary strength.
Simulation results show that the thin metal films on
polymer substrates rupture by film necking. As shown
in Fig. 4, for a given interfacial adhesion quality, the
failure strain is independent of grain boundary adhe-
sion energy. For a given grain boundary adhesion energy
ΓGB
n,s , the stronger the interfacial adhesion, the higher

the failure strain. Overall, when the grain boundary
strength is high, the failure strain ranges from mod-
est to ultra-high. As depicted in the insets in Fig. 4,
when the interfacial adhesion is strong, the thin metal
film can deform uniformly to a very large strain (e.g.,
100 %) without rupture due to the strong constraint
from the polymer substrate. When the interfacial ad-
hesion is intermediate, multiple necks appear in the thin
metal film before it eventually ruptures. Each neck (i.e.,
local thinning) results in a local elongation, adding up
to an intermediate rupture strain. When the interfa-
cial adhesion is weak, the interfacial debonding occurs
at small tensile strain and can easily propagate through
the whole interface, leaving the thin metal film nearly
freestanding. The freestanding thin metal film ruptures
by forming a single neck near the imperfection location
in each grain, leading to a rather low rupture strain.
These results agree with those from earlier modeling
and experimental studies.8,10,18

In summary, we study two competing failure mech-
anisms (metal film necking vs. grain boundary crack-
ing) of thin metal films on polymer substrates, through
comprehensive computational modeling. We show that,
when the grain boundaries of the metal films are weak,
the thin metal films tend to rupture by grain bound-
ary cracking. The metal film ductility is modulated by
the metal/polymer interfacial adhesion, but in general
ranges from low to modest. When the grain bound-
aries of the metal films are strong, the thin metal films
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mainly rupture by necking. There are large variations
of the ductility, depending on the interfacial adhesion
quality. The above results (e.g., Figs. 3 and 4) are
shown to be robust within the range of parameters used
in the traction-displacement laws in this paper. While
further investigation is necessary on the co-evolution
of metal film necking and grain boundary cracking as
observed in experiments, the quantitative results from
this study suggest that, to achieve high ductility of thin
metal films on polymer substrates, it is desirable to have
strong grain boundaries of the metal films and strong
metal/polymer interfacial adhesion. We therefore call
for further experimental verification of the modeling re-
sults reported here.

Fig. 4. Failure strain vs. ΓGB
n,s for various interfacial

adhesion qualities. Here grain boundary strength is high
(σGB

n,s = 150 MPa). Insets show the close-up of thin metal
film necking. Color shades denote von Mises stress. Only
partial simulation model (upper left corner of Fig. 2(a)) is
shown.
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