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a b s t r a c t

Continuum mechanics predicts that the propagation speed of non-equilibrium informa-

tion in solids is limited by the longitudinal wave speed, so is crack propagation.

However, solids are essentially discrete systems. In this paper, via theoretical analysis

and numerical simulations, it is demonstrated in a straightforward way that non-

equilibrium disturbance (e.g. force, displacement, energy, and so on) can propagate at a

supersonic speed in discrete systems, although the magnitude of the disturbance

attenuates very quickly. In dynamic fracture, a cascade of atomic-bond breaking events

provides an amplification mechanism to counterbalance the attenuation of the

disturbance. Therefore, supersonic crack propagation can be realized in a domino

way. Another key factor for supersonic crack propagation is to ensure sufficient energy

flowing into the crack tip. Since most energy can only be transferred at a speed limited

by the longitudinal wave speed, the conditions for the occurrence of supersonic crack

propagation are not easily met in most situations, unless there is high pre-stored energy

along the crack path or continuous energy supply from the loading concomitantly

moving with the crack tip. A quantitative relation between supersonic crack propaga-

tion speed and material properties and parameters is given, which implies that knowing

all the classical macroscopic quantities is not enough in determining the supersonic

crack propagation speed, and the microstructure does play a role. Moreover, it is

interesting to note that fracture toughness affects the crack propagation speed in the

subsonic regime, but not in the supersonic regime, because the deformation/stress is

uniform in front of a supersonic crack where strength criterion dominates.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Rapidly propagating crack has been studied for many years, but lots of phenomena have still not been understood
thoroughly. Especially, what is the upper limit of crack propagation speed attracts much attention recently, and there is a
lack of consensus on the answer to this question. In the framework of continuum mechanics, dynamic fracture mechanics
predicts that the energy release rate for mode I crack becomes negative if the crack propagates faster than the Rayleigh
wave speed, implying that the Rayleigh wave speed is the upper limit of mode I crack speed (Broberg, 1999; Freund, 1998;
Slepyan, 2002). Previous numerical simulations (Abraham et al., 1994, 1997; Buehler et al., 2004b; Rountree, 2002;
Swadener et al., 2002) and experimental work (Cramer et al., 2000; Fineberg et al., 1991; Hauch et al., 1999; Hauch and
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Marder, 1998; Marder and Gross, 1995; Ravi-Chandar, 1998) showed that crack does not propagate beyond the Rayleigh
wave speed. For a mode II crack, continuum mechanics also predicts a negative energy release rate if the crack propagates
faster than the Rayleigh wave speed, except in the range of intersonic propagation (between the shear and longitudinal
wave speeds), which implies that a mode II crack can propagate at intersonic speed. Burridge (1973) attributed the
mechanism to the positive peak of shear stress ahead of the tip of the mode II crack tip traveling at the Rayleigh wave
speed. Andrews (1976) found that when the speed of crack propagation approaches to the Rayleigh wave speed, a
microcrack with the velocity beyond the shear wave speed will be induced ahead of the mother crack tip. Taking advance
of molecular dynamics (MD) method, Abraham and Gao et al. (Abraham and Gao, 2000; Gao, 2001; Abraham, 2001)
simulated the mode II crack propagation at the velocity exceeding shear wave speed and found a daughter crack formed
ahead of the mother crack tip. Needleman (1999) obtained the similar results using the cohesive surface in finite element
simulations. The experimental observation of Rosakis et al. (1999; 2002) provided the first direct evidence that a mode II
crack can travel at intersonic speed.

However, it is also noted that continuum mechanics fails to predict the following numerical and experiments results on
dynamic fracture. Gao (1997) and Abraham (1996, 1997) observed in their MD simulations that a mode I crack propagates
at super-Rayleigh speed, and a mode II crack propagates at supersonic speed. They attributed the phenomenon to the local
hyperelastic effects of solids (Buehler et al., 2003, 2004a; Buehler and Gao, 2006; Guo et al., 2003). Also using MD method
to investigate dynamic fracture, Guozden et al. (2005; 2010) concluded that both mode I and mode III cracks can propagate
at supersonic speed. Petersan et al. (2004) conducted dynamic fracture experiments on popping rubber, and found that the
crack propagation speed of a mode I crack is faster than the shear wave speed. Slepyan (1972, 1981, 2001a, 2001b)
pioneered the theoretical study on the possibility of supersonic crack propagation in lattice system and presented the
corresponding analytical solutions. Adopting similar theoretical analyses, Mishuris et al. (2008, 2009) studied the bridge
crack propagation in lattice system and found that the supersonic crack propagation speed was predicted in the analytical
results.

The contradiction between the predictions from continuum mechanics and those from experimental and MD results on
the upper limit of crack propagation speed has brought a lot of confusion. On the one hand, according to continuum
mechanics theory, any information of non-equilibrium disturbance cannot travel faster than the longitudinal wave speed.
If so, how can a crack propagate faster than this upper limit speed? On the other hand, the MD simulations and
experiments indeed demonstrated that the Rayleigh wave speed, or even the longitudinal wave speed, can be exceeded in
mode I crack propagation. These contradictive predictions inspire us to suspect that the essential discreteness of solids
might play an important role in rapid dynamic fracture, which is neglected or smeared out in continuum mechanics. We
would like to emphasize that all solids consist of discrete atoms, and continuum mechanics is only an idealized model of
solids based on continuity assumption. In most cases, continuum mechanics can give good predictions and have been
widely used. However, the fracture of solids involves atomic bond breaking at the crack tip, and continuum mechanics
might yield incorrect predictions in certain extreme cases.

This paper is aimed to explore the underlying mechanisms of supersonic crack propagation, and study the quantitative
dependence of supersonic crack propagation speed on both material properties and microstructure parameters. The
structure of this paper is as follows. In Section 2, we show several numerical cases in which a mode I crack propagates at a
supersonic speed. In Section 3, by investigating the difference between the dynamic behaviors of one dimensional discrete
and continuous solid system, we demonstrate that the information of non-equilibrium disturbance can propagate at a
supersonic speed, which is the key factor validating the possibility of supersonic propagation of a mode I crack. In Section
4, we investigate several typical loading conditions, and reveal suitable energy supply mechanisms for maintaining
supersonic crack propagation. In Section 5, the effects of microstructure and other parameters on supersonic crack
propagation are discussed. Conclusions are summarized in Section 6.

2. Numerical examples of supersonic mode I crack propagation

To systematically study the dynamic fracture behaviors, a two-dimensional strip specimen with triangle lattice shown
in Fig. 1a is simulated. This is an idealized model for a solid crystal, in which concentrated mass m is only deployed at
nodes (or atoms) and the connecting bonds are represented by massless linear springs with original length l0 and spring
constant k. The simulation system consists of 120 rows, and each row has 450 nodes. At first, vertical tensile displacement
loading is applied to the top and bottom boundaries of the non-cracked specimen, and the system is under uniform
deformation with stretched bond length la. A crack is then suddenly introduced by removing the left part of bonds crossing
the horizontal middle plane while keeping the displacement loading fixed as shown in Fig. 1a. In order to simulate a
straight propagating crack, it is assumed that the rest of the bonds crossing this middle plane (colored by red) have a
critical breaking length lc, while the other bonds never break. The dynamical finite element method (FEM) (ABAQUS, 2005)
is used to simulate the subsequent dynamic fracture behaviors. The focus of this numerical study is to investigate whether
a mode I crack can propagate at a supersonic speed.

We first determine the longitudinal wave speed of this two dimensional network by simulation and theoretical
analysis. Fig. 2a shows three sequential snapshots of the non-cracked specimen after a pulse dilatational loading on the left
part of the specimen, from which the longitudinal wave speed can be computed as cl ¼ 1:061l0

ffiffiffiffiffiffiffiffiffiffi
k=m

p
. The following

theoretical analysis further validates this computed value. According to continuum mechanics, the elastic constants of a
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Fig. 1. (a) The simulation model of a two-dimensional strip specimen with triangle lattice. The red bonds crossing the middle plane are assumed to be

weak with a critical force-stretch curve (b) (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.).
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Fig. 2. Sequential snapshots of the propagation of longitudinal wave (a) and dynamical crack for pre-stretched strip specimen with different critical

breaking bond lengths,
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sa=ðsc�saÞ

p
¼ 7:00ðbÞ,48:6ðcÞ,83:3ðdÞ and 1750ðeÞ, respectively. Color shades denote nodal speed.
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two dimensional triangular lattice behaving as a plane stress strip can be depicted as (Gao, 1996)

m¼
ffiffiffi
3
p

4
k, E¼

2ffiffiffi
3
p k, n¼ 1

3
ð1Þ
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where m is the shear modulus, E is the Young’s modulus and n is the Poisson’s ratio. The density of the triangular lattice is

r¼ 2mffiffiffi
3
p

l0
2

ð2Þ

Therefore, its longitudinal wave speed is

cl ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E

ð1�n2Þr

s
¼ l0

ffiffiffiffiffiffiffi
9k

8m

r
� 1:061l0

ffiffiffiffiffi
k

m

r
ð3Þ

The consistency of the computed value with the theoretical prediction verifies the simulation approach. For
convenience, we introduce the nominal modulus as

E0 ¼
E

ð1�n2Þ
ð4Þ

which represents the tensile stiffness of the material without lateral shrinkage. The longitudinal wave speed can be
rewritten as

cl ¼

ffiffiffiffi
E0

r

s
ð5Þ

Moreover, the Rayleigh wave speed is

cR � 0:566l0

ffiffiffiffiffi
k

m

r
� 0:534

ffiffiffiffi
E0

r

s
ð6Þ

We then simulate four cases with various dynamic fracture behaviors. For consistency, the pre-stretched bond length in
all cases is fixed as la¼1.008745l0, and the critical breaking bond length lc is reduced case by case, which makes the crack
propagate more easily and faster. We also use sa and sc to represent the pre-stress and strength of the system,
respectively, and

sa ¼
4E0

3

la�l0
l0

sc ¼
4E0

3

lc�l0
l0

ð7Þ

Case 1. (Subsonic crack propagation). Fig. 2b shows simulation Case 1 with sa/(sc�sa)¼(la� l0)/(lc� la)¼7.00 in which the
crack propagation speed is slower than the longitudinal wave speed cl and the Rayleigh wave speed cR. This case falls into
the predictable regime of continuum fracture mechanics.

Case 2. (Intersonic crack propagation). Fig. 2c shows simulation case 2 with a lower lc so that sa/(sc�sa)¼(la� l0)/
(lc� la)¼48.6. In this case, the daughter crack is formed in front of the mother crack tip and propagates faster than cR, and
similar phenomena have been reported and investigated in previous studies on mode II crack (Abraham and Gao, 2000).
However, different from the case of mode II shear crack, the nucleation of the daughter crack in our modeling is due to the
longitudinal wave reflection against the boundary and meeting ahead of the mother crack. This regime cannot be
understood and predicted by continuum fracture mechanics on mode I crack.

Case 3 and 4. (Supersonic crack propagation). Further reducing lc, so that sa/(sc�sa)¼(la� l0)/(lc� la)¼83.3 in case 3 and
sa/(sc�sa)¼(la� l0)/(lc� la)¼1750 in case 4, it is found that the crack can propagate at a supersonic speed, namely faster
than the longitudinal wave speed, as clearly shown by the Mach cones in Fig. 2d and e. It is also noted that when the critical
breaking bond length lc approaches the pre-stretched bond length la (or the strength sc approaches the pre-stress sa), the
crack can propagate much faster than the longitudinal wave speed (e.g., roughly 10 times faster in case 4). This can be
understood by an extreme case: when lc equals to la (or sc equals to sa), all bonds reach their strength simultaneously, i.e.
the crack propagates at an infinite speed. The continuum fracture mechanics is not capable of predicting this regime either.

It should be pointed out that all simulations above have been further verified by another numerical approach,
molecular dynamics, and the convergence of time step is also checked. Therefore, we are confident on the simulation
results of supersonic crack propagation. The contradiction between our simulation results and continuum fracture
mechanics on the upper limit of crack propagation speed inspires us to suspect that some features of dynamic fracture
might be lost by the continuity assumption. In particular, two underlying mechanisms are of our concerns
1)
 The longitudinal wave speed has been believed as an upper limit speed in continuum mechanics. How can a non-
equilibrium disturbance propagate faster than it?
2)
 How is the energy pre-stored or supplied to maintain continuous supersonic crack propagation?

These two issues will be discussed in the following two sections separately.
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3. The supersonic propagation of non-equilibrium disturbance in discrete systems

For simplicity, one dimensional discrete mass-spring system shown in Fig. 3a is adopted to investigate its dynamic
response. Identical to the previous example in Section 2, the springs are massless with spring constant k and original
length l0. Each node has a concentrated mass m. A half-length spring with spring constant 2k is deployed at the right end
for future convenience. This system is stress free at the initial time t¼0. We then suddenly impose a constant velocity load

v0 ¼ l0
ffiffiffiffiffiffiffiffiffiffi
k=m

p
at the right end. According to continuum mechanics, this disturbance will propagate at the longitudinal speed

cl ¼
ffiffiffiffiffiffiffiffiffi
E=r

p
¼ l0

ffiffiffiffiffiffiffiffiffiffi
k=m

p
, and two adjacent nodes will sense this disturbance with a time interval Dtcontinuum ¼ l0=cl ¼

ffiffiffiffiffiffiffiffiffiffi
m=k

p
.

For comparison, we will investigate if the corresponding time interval of this discrete system is less than Dtcontinuum via
direct simulation.
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Fig. 3. (a) Schematic of a one dimensional discrete mass-spring system subjected to a suddenly imposed velocity loading. (b) The normalized

displacements of the first three nodes as a function of normalized time from three different numerical methods. (c) Comparison between the asymptotic

solution of Eq. (12) and simulation results.
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We perform MD, explicit algorithm of FEM (ABAQUS-EXPLICIT) and implicit algorithm of FEM (ABAQUS-IMPLICIT) to
simulate the dynamic response of this 1D discrete system. Fig. 3b plots the displacements of the first three nodes as a
function of time. All three simulation methods predict the same displacement responses. It can be observed that all nodes
respond (or start to move) at the same time when a load is imposed to the right end. We may use a specific magnitude of
displacement as the threshold to detect the startup of node movement. It is found from Fig. 3b that the time intervals for
adjacent nodes reaching a small displacement threshold are less than Dtcontinuum ¼

ffiffiffiffiffiffiffiffiffiffi
m=k

p
. Moreover, a lower displacement

threshold corresponds to a shorter time interval. In other words, if we have a highly sensitive displacement sensor, a
supersonic propagation of the non-equilibrium disturbance can be detected, a phenomenon that cannot be predicted by
continuum mechanics.

At the very beginning of this dynamic process, i.e., for an infinitesimal time t, an asymptotic theoretical solution can be
obtained, which can validate our simulation and demonstrate the supersonic propagation. We first investigate the relation
among the dynamic responses of node i, node iþ1 and node iþ2 (shown in Fig. 3a) to derive a recurrence formula. The
force on node iþ1 is

Fiþ1 ¼ k½uiðtÞ�uiþ1ðtÞ��k½uiþ1ðtÞ�uiþ2ðtÞ� ð8Þ

where u is the displacement of node. For an infinitesimal time t, it is reasonable to assume that 9ui(t)9b9uiþ1

(t)9b9uiþ2(t)9. Therefore, the above equation becomes

Fiþ1 ¼ kuiðtÞ ð9Þ

Dividing both sides with the node mass, the acceleration of node iþ1 is obtained as

aiþ1ðtÞ ¼
d2uiþ1ðtÞ

dt2
¼

k

m
uiðtÞ ð10Þ

which is a recursive formula on nodal displacement.
A similar analysis predicts the displacement of node 1 as

u1ðtÞ ¼
1

3

k

m

� �
v0t3 ð11Þ

Together with Eq. (10), the displacement of other nodes can be computed as

unðtÞ ¼
2

ð2nþ1Þ!

k

m

� �n

v0t2nþ1 ð12Þ

So,

u2ðtÞ ¼
1

60

k

m

� �2

v0t5

u3ðtÞ ¼
1

2520

k

m

� �3

v0t7 ð13Þ

Fig. 3c shows that this asymptotic analytical solution agrees well with the simulation results when the time t is small
enough. Actually, the accuracy of the solution can be guaranteed since uiþ1(t)/ui(t)-0, uiþ2(t)/ui(t)-0 and Eq. (9) tends to
be accurate when t approaches zero.

The asymptotic analytical solutions, Eq. (12), clearly demonstrate that all nodes move simultaneously once the load is
applied at the right end, which implies the supersonic propagation of the disturbance. On the other hand, Eq. (12) also
shows that the magnitude of the disturbance under supersonic propagation attenuates dramatically. After traveling over
several nodes, it becomes too small to detect in reality. This can be demonstrated by the following example.

To understand the discrepancies and relations between the dynamical response of a discrete system and that predicted
by continuum mechanics, we homogenize the discrete system step by step. We view the segment between the two dashed
lines in Fig. 4a as one fundamental spring-mass element. One round of homogenization is realized by dividing each of such
elements into three shorter elements, with three times of spring constant and one third of the node mass, as shown in
Fig. 4b. Obviously, after infinite rounds of homogenization, a discrete mass-spring system transforms into a continuum bar.
We investigate the effect of a series of homogenization on the displacement responses of point A with a distance d from the
right end (shown in Fig. 4).

Fig. 4e plots the displacement of point A as a function of time for the original discrete system, the first three rounds of
homogenized systems and the continuum bar. It is found that when a velocity load is suddenly imposed on the right end of
discrete systems, point A responds at the same time. Moreover, the more homogeneous the system is, the lower the
magnitude of initial response is, and the extreme case is the continuum bar, in which point A only starts to move at
t¼ 1:5

ffiffiffiffiffiffiffiffiffiffi
m=k

p
, just the same as the prediction by continuum mechanics. It is also noted that if the length of concern in this

example, i.e., d¼1.5l0, is much larger than the intrinsic length of a discrete system, i.e., the spring length l0, the dynamical
behavior can be predicted well by continuum mechanics, otherwise error may be significant.

The difference on the dynamical behavior between a discrete system and an idealized continuum solid is attributed to
the fact that the massless springs in a discrete system have infinite longitudinal wave speed. All real solids are indeed
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discrete systems, in which no mass is related to interatomic interactions. Therefore, supersonic propagation of disturbance
in real solids is possible. Because the magnitude of the supersonically propagating disturbance attenuates very quickly
with the distance from the original location of the disturbance, it can hardly be detected in most situations. However, if the
supersonic propagation of one non-equilibrium disturbance can trigger another disturbance and the continuous
amplification of the disturbance amplitude can overbalance the amplitude attenuation, supersonic propagation of
disturbance can be realized in a domino way, such as the cascade of atomic-bond breaking events occurring in the
dynamic fracture process of a solid.
4. Energy supply mechanisms for supersonic crack propagation

To maintain the supersonic propagation of a non-equilibrium disturbance, one crucial requirement is a feasible energy
supply mechanism, e.g., sufficient energy flow into the tip of a supersonically propagating crack. It has been demonstrated
in Section 2 that supersonic crack propagation may be realized if the energy is pre-stored in front of the crack tip. In this
section, we will first study the mechanism of pre-stored energy more systematically and then explore other possible
energy supply mechanisms for supersonic crack propagation.
4.1. Examples with pre-stored energy in front of a supersonic crack tip

To gain a deeper understanding of the supersonic crack propagation with pre-stored energy in front of the crack tip
demonstrated in Section 2 (e.g., Fig. 2d and e), we will establish a quantitative relation between the crack propagation
velocity and the loading by carrying out a theoretical analysis on a four-row discrete system in this subsection.



Y.J. Jia et al. / J. Mech. Phys. Solids 60 (2012) 1447–14611454
Fig. 5a shows a four-row strip discrete system under pre-stretch, and the non-horizontal bonds have the pre-stored
energy. The bonds crossing the middle plane (denoted by the dashed line) are assumed to be weak with a critical force-
stretch curve shown in Fig. 1b. The crack propagates towards the right. Just after bond 1 is broken, we investigate the
subsequent breaking process of bond 2 to predict the crack propagation velocity. In the regime of supersonic crack
propagation, node A is in equilibrium before bond 1 breaks. During a very short time after breaking of bond 1, it is
reasonable to assume that node A moves along bond 3 (denoted by the red arrow in Fig. 5a) with the acceleration

a¼
kðla�l0Þ

m
¼

3ksal0
4mE0

ð14Þ

The time interval from the breaking of bond 1 to the breaking of bond 2, Dt, can be determined by solving the following
equation:

1

4
aDt2 ¼ lc�la ¼

3ðsc�saÞl0
4E0

ð15Þ

and

Dt¼

ffiffiffiffiffiffiffi
4m

k

r ffiffiffiffiffiffiffiffiffiffiffi
lc�la
la�l0

s
¼

ffiffiffiffiffiffiffi
4m

k

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sc�sa

sa

r
ð16Þ

Therefore, the speed of the crack propagation is given by

vc ¼
l0

2Dt
¼

1

3
ffiffiffi
2
p

ffiffiffiffiffiffiffiffiffiffiffi
la�l0
lc�la

s ffiffiffiffi
E0

r

s
¼ Z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa

sc�sa

r
cl ð17Þ

where Z¼ 1=3
ffiffiffi
2
p

represents the effect of microstructure on the crack propagation speed and obviously depends on the
angles of the triangle lattice. Eq. (17) implies that the crack propagation speed is determined by the material
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microstructure, the stress–strength ratio and the longitudinal wave speed. Obviously, if the pre-stress sa is close to the
bond strength sc, vc4cl, i.e., the crack propagation is supersonic. Fig. 5b plots normalized crack propagation velocity vc as
a function of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa=ðsc�saÞ

p
for the theoretical prediction from Eq. (17) and the simulation results on two discrete systems

(4 rows and 120 rows), respectively. The simulation results agree well with the theoretical prediction of the linear relation
between vc and

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa=ðsc�saÞ

p
in the regime of supersonic crack propagation.

We emphasize again that in the above examples, the pre-stored energy on the crack path is almost saturated, in a sense
that a tiny amount of additional energy can trigger the bond breaking, which is transferred by supersonically propagating
non-equilibrium disturbance from its neighbor bond breaking. As a result, supersonic crack propagation is realized.

4.2. Numerical trousers tearing experiments without pre-stored energy

In this subsection, we investigate if pre-stored energy is a necessary condition for supersonic crack propagation. Fig. 6a
shows the same 4-row trousers-like discrete system and there is no pre-stretch in front of crack tip. Alternatively, we
impose vertical tearing velocity loadings vt4cl at the two ends of the trouser legs. Intuition leads to the prediction that
this supersonic tearing speed might lead to supersonic crack propagation. To facilitate the tearing, an infinitesimal critical
breaking strain ((lc� l0)/l0¼0.00001) is chosen for the bonds along the crack path. The simulation results are summarized
in Table 1. It is found that the crack propagation velocity vc is always lower than the longitudinal wave speed no matter
how large the tearing speed vt is. Fig. 6b shows sequential snapshots of the deformed discrete system under a tearing
speed of vt¼2cl, which reveals that the supersonic tearing speed leads to fast leg extension while the resulting crack
propagation speed is subsonic.

The absence of supersonic crack propagation in the above example can be understood as follows. Since the velocity
loadings are imposed on the fixed points far away from the crack tip, and supersonic propagation of primary energy supply
from these points attenuates too quickly to provide sufficient energy flow into the crack tip. In other words, major part of
the energy to drive crack propagation can only be transferred at a speed limited by the longitudinal wave speed, resulting
in a subsonic crack propagation.

By contrast, if the loading points can closely follow the advancement of the crack tip, as shown in Fig. 7a, sufficient
energy could reach the crack tip before significant attenuation and help maintain supersonic crack propagation. Such
loading conditions can be satisfied in cases such as explosion-induced fracture and splitting wood with axe, in which inner
Tearing speed

Tearing speed

Tearing speed

vc vc vc

30   m/kt 60   m/kt 120   m/kt
Subsonic crack propagation 0.88 clvc

2clvt

2clvt

2clvt

vt Cl

vt Cl

Fig. 6. Numerical trousers tearing experiments. (a) Schematic of trousers-like discrete system under tearing loadings and (b) sequential snapshots of

crack propagation. Color shades denote nodal speed.

Table 1
The normalized crack propagation speeds for different normalized tearing speeds.

Tearing speed vt/cl Crack propagation speed vc/cl

1 0.87

2 0.88

10 0.94
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Fig. 7. (a) Schematic of a strip discrete system splitting by a pair of forces concomitantly moving with the crack tip. (b) Sequential snapshots of crack

propagation. (c) Shows a close-up view of the supersonically propagating crack tip with a higher temporal resolution. Color shades denote nodal speed.
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pressure is continuously imposed on the newly-formed crack surfaces. As a demonstration, a pair of moving forces
F¼50kl0 along the vertical direction is imposed on the crack surfaces, with a fixed distance from the advancing crack tip
(Fig. 7a). The same mechanical and geometrical parameters of the discrete system as in Section 2 are used here. Fig. 7b and
c shows sequential snapshots of the crack propagation with two different space and time resolution. As the apparent Mach
cones in Fig. 7b suggest, the crack propagation is supersonic, with a speedvc ¼ 2:01l0

ffiffiffiffiffiffiffiffiffiffi
k=m

p
� 1:89cl. Therefore, supersonic

crack propagation in a system without pre-stored energy is possible if there exists sufficiently large loadings that move
concomitantly with the propagating crack tip.

5. Discussion

Eq. (17) suggests that the supersonic crack propagation speed not only depends on the longitudinal wave speed
cl ¼

ffiffiffiffiffiffiffiffiffiffi
E0=r

p
, but also depends on the stress ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa= sc�sað Þ

p
and the microstructure geometry. However, it seems that the

fracture toughness does not play a role in supersonic crack propagation. To address this issue, Section 5.1 studies the effect
of the fracture toughness on crack propagation speed. The effect of microstructure geometry on supersonic crack
propagation is further investigated in Section 5.2.

5.1. The effect of the fracture toughness on crack propagation speed

To investigate the influence of fracture toughness on crack propagation speed, two triangle lattice discrete systems are
studied. One is the system shown in Fig. 1a and used in the simulations in previous sections. The other one has a similar
lattice structure but with a longer original bond length 2l0. By adjusting various microscopic parameters, i.e., lc and m, all
macroscopic parameters of these two systems (e.g., the stiffness E0, the density r, the strength sc, and the width of
specimen h) are tailored to be the same, except the fracture toughness GIC. Here the resulting ratio of the fracture
toughnesses is Gð2ÞIC =Gð1ÞIC � 2, which is consistent with the dimensional analysis that GIC is proportional to the bond length.
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Both systems are subject to the same applied stress sa as in Fig. 1a. Fig. 8 shows that the crack propagation speeds in the
two systems are almost identical in the regime of supersonic propagation, which supports the theoretical prediction of Eq.
(17) that supersonic propagation is independent of fracture toughness. By contrast, the crack propagation speeds in the
two systems differ in the regime of subsonic crack propagation. In other words, our numerical results imply an interesting
conclusion that the crack propagation speed depends on the fracture toughness in the subsonic regime, but not in the
supersonic regime. This can be further understood as follows. The deformation/stress is concentrated in front of a subsonic
crack (see Fig. 2b) where fracture criterion dominates, while the deformation/stress is rather uniform in front of a
supersonic crack where strength criterion dominates (see Fig. 2d).
5.2. The effect of microstructure on supersonic crack propagation

In this subsection, we investigate the effect of microstructure (e.g., Z in Eq. (17)) on supersonic crack propagation. To
this end, we study the discrete systems of isosceles triangle lattice with different base angles a (see Fig. 9a), while keeping
the macroscopic parameters of systems the same, including the width of model h, the nominal modulus E0, the density r,
the strength sc and the fracture toughness GIC. To meet this requirement, other microscopic parameters of the system,
including the bond length, the spring constants, and the concentrated mass, have to be adjusted. Following a similar
derivation as in Section 4.1, the speed of supersonic crack propagation can be obtained as

vc að Þ ¼ Z að Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa

sc�sa

r ffiffiffiffi
E’

r

s
ð18Þ

where

Z að Þ ¼ cosa
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2cos2a
p

2sin2a
ð19Þ

represents the effect of microstructure on the crack propagation speed. The detailed derivation is given in the Appendix.
Fig. 9b plots the crack propagation speed as a function of the stress ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa=ðsc�saÞ

p
for various microstructures, (i.e.,

a¼751, 67.51, 601, 52.51, 47.51). The simulation results reveal a linear dependence of crack propagation speed on the stress
ratio, in excellent agreement with the analytical prediction of Eq. (18) for all microstructures considered. It is clearly
shown in Fig. 9b that the microstructure does affect the supersonic crack propagation speed. Such an effect is further
demonstrated by the plot of the crack propagation speed as a function of base angle for

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa=ðsc�saÞ

p
¼ 40 in Fig. 9d, which

also shows an excellent agreement between simulation results and analytical prediction. Fig. 9c offers a visualized
comparison of the supersonically propagating crack fronts in the five systems with various microstructures (i.e., a¼751,
67.51, 601, 52.51, 47.51) at a given instant in time.
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and the base angles of isosceles triangle lattice (d). (c) Snapshots of dynamical crack fronts in pre-stretched strip specimen with different microstructures

at a given instant of time. Color shades denote nodal speed.
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6. Conclusions

Using theoretical analysis and numerical examples, we show that the speed of crack propagation in solids is not limited
by the longitudinal wave speed. We further quantitatively relate the speed of supersonic crack propagation with both
material properties and microstructure parameters. The following conclusions can be drawn:
(1)
 Non-equilibrium disturbance (e.g. force, displacement, energy, and so on) can propagate at a supersonic speed in
discrete systems, in contrast to the prediction of continuum mechanics, in which no information can propagate faster
than the longitudinal wave speed. Since all solids are essentially discrete atomic systems, supersonic propagation of
disturbance is indeed possible. The magnitude of non-equilibrium disturbances during supersonic propagation,
however, attenuates very quickly; as a result, it can hardly be observed in reality.
(2)
 In a dynamic fracture process, the supersonic propagation of one non-equilibrium disturbance can trigger another
disturbance, i.e., a cascade of atomic-bond breaking events, which serves as an amplification mechanism to
counterbalance the attenuation of the disturbance. Consequently, supersonic crack propagation can be realized in a
domino way.
(3)
 Another key factor for supersonic crack propagation is to ensure sufficient energy flow into the crack tip. Nevertheless,
it is found that the major part of energy can only be transferred at a speed limited by the longitudinal wave speed.
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Therefore, the conditions for the occurrence of supersonic crack propagation can hardly be met in most situations,
unless there exists sufficiently high pre-stored energy along the crack path or continuous energy supply from the
loadings concomitantly moving with the crack tip.
(4)
 The study on the triangle lattice systems shows that, supersonic crack propagation speed not only depends on the
longitudinal wave speed cl ¼

ffiffiffiffiffiffiffiffiffiffi
E0=r

p
and the stress–strength ratio

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa=ðsc�saÞ

p
, but also on the microstructure

geometry, which implies that macroscopic quantities cannot fully determine the supersonic crack speed. Moreover, it
is interesting to note that the fracture toughness only affects the crack propagation speed in the subsonic regime, but
not in the supersonic regime, since the deformation/stress is uniform in front of a supersonic crack where strength
criterion dominates.
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Appendix

To ensure that the macroscopic parameters of different isosceles triangle lattices are the same as those for the
equilateral triangle lattice, we perform the theoretical analysis on the representative periodical unit shown in Fig. A1.

From the geometric relations in Fig. A1a, it is found that

lH0 ¼ 2 cos a lT0 ðA1Þ

where lH0 and lT0 represent the original bond length of horizontal and tilted bonds, respectively.
After infinitesimal biaxial stretching, as shown in Fig. A1b, the bond lengths of deformed periodical unit can be

computed as,

lH ¼ 2ð1þe11Þcos alT0

lT ¼ ð1þcos2a e11þsin2 a e22ÞlT0
ðA2Þ

The equivalent stresses in deformed configuration can be expressed as

s11 ¼
kHðlH�lHOÞþkT ðlT�lTOÞcos a

sin alT0

s22 ¼
kT ðlT�lTOÞsin a

cos a lTO
ðA3Þ
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Fig. A1. Schematics of (a) an undeformed and (b) a deformed periodical unit cell of isosceles triangle lattice for theoretical analysis.
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Substituting Eq. (A2) into Eq. (A3) yields

s11 ¼
cos a
sin a ð2kHþcos2 akT Þe11þsin a cos akTe22

s22 ¼ sin a cos a kTe11þ
sin3 a
cos a kTe22 ðA4Þ

Since the 1-direction displacements on the upper and lower boundaries of the strip specimen are fixed in our
simulation, the following nominal moduli can represent the stiffness better than Young’s modulus,

E011 ¼
s11

e11

����
e22 ¼ 0

¼
2 cos a kHþcos3 a kT

sin a
ðA5Þ

E022 ¼
s22

e22

����
e11 ¼ 0

¼
sin3 a kT

cos a
ðA6Þ

Noting that the equilateral triangle lattice has isotropic modulus, we let E011 ¼ E022 ¼ E0 for the isosceles triangle lattice
and obtain

2 cos2 akH ¼ ð1�2 cos2 aÞkT ðA7Þ

Substituting Eq. (A7) into Eqs. (A5) and (A6) kH and kT can be determined as

kH ¼
1�2 cos2 a

2cos a sin3 a
E0

kT ¼
cos a
sin3 a

E0 ðA8Þ

Eq. (A7) implies that the range of a is from 451 to 901.
Our numerical simulations on the isosceles triangle lattice indicate that the longitudinal wave speed is still

ffiffiffiffiffiffiffiffiffiffi
E0=r

p
. The

fracture toughness of the strip system can be computed as

GIC ¼
1

2
E0e2

kch ðA9Þ

where h is the width of the system, ekc is the strain far ahead of the crack at which the crack begins to propagate.
Similar to the derivation as illustrated in Fig. 5a, the analysis on the supersonic crack propagation speed is given as

follows. We denote the strength and pre-stress of the system as sc and sa. The fracture length and pre-stretch length of
bonds are lTc and lTa. From Eq. (A2), the acceleration of point A can be computed as

a¼
kT ðlTa�lT0Þ

m
¼

kT

m
sin2 asa

E0
lT0 ðA10Þ

where the mass of A is

m¼ 2rðlT0Þ
2sinacosa

The time interval from the breaking of bond 1 to the breaking of bond 2, Dt, can be determined by solving the following
equation:

1

2
að1�2cos2 aÞDt2 ¼ lTc�lTa ¼ sin2 asc�sa

E0
lT0 ðA11Þ

Therefore, the speed of the crack propagation is given by

vcðaÞ ¼
lH0

2Dt
¼ ZðaÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sa

sc�sa

r ffiffiffiffi
E0

r

s
ðA12Þ

where

ZðaÞ ¼ cos a
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�2cos2 a
p

2sin2 a
ðA13Þ

represents the effect of microstructure on the crack propagation speed.
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