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Abstract. This paper concerns with free vibration analysis of single-walled carbon nanotubes 

including the effect of small length scale based on the nonlocal elasticity theory. The governing 

equation of nanotube is derived from Euler beam theory including a nonlocal parameter in the 

function of masses. Classical solutions are obtained and then compared with the numerical solutions 

provided by finite element models. Effect of tube chirality and various geometrically boundary 

conditions are considered. The finite element models of nanotubes are assumed as the virtually 

analogous frame structures. In the numerical technique, the atomic masses existing on the both ends 

of beams are assigned by physical and chemical properties of carbon element. The results show that 

the natural frequencies significantly increase when the nonlocal parameters decrease. The numerical 

results are in good agreement with the classical solutions for the nanotubes with low aspect ratios 

and are acceptable for high aspect ratios. Furthermore, the first-ten mode shapes are demonstrated 

for various aspect ratios and boundary conditions, and the repeated natural frequencies are also 

highlighted in this study. 

Introduction 

Since carbon nanotubes (CNTs) had been discovered by Iijima [1] in 1991, extensive researches 

had been done to obtain their extraordinary properties such as a high aspect ratio and flexibility [2], 

a very large tensile strength and Young modulus [3], superconductivity and well-bonding strength 

between carbon atoms. Free vibration analysis of CNTs using beam element [4] has been studied to 

obtain the properties and behaviors of materials and those results are validated by the other 

methods. Although the results from the classical beam theory gave the exact closed-form solutions, 

however in many cases it is necessary to have the results from the conventional numerical methods 

as alternative approaches to verify these results.  

In this work, the effect of small length scale based on the nonlocal elasticity is included in the 

equation of motion of nanotube based on Euler beam theory. Finite element models of single-walled 

carbon nanotubes (SWCNTs) are also developed as the frame-like structures in order to validate the 

results from the classical method. 

Equation of motion of nonlocal carbon nanotube 

According to Eringen [5], the nonlocal theory is based on the crucial concept that stress at a point 

is a function of strains at all points in the continuum. It is quite different from the conventional 

theory that the stress at the point depends only on the strain at the point. Based on the conditions of 

a homogeneous isotropic beam in one dimensional analysis to simplify the problem, the nonlocal 

constitutive relations can be expressed as 
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where ,xx xxσ ε  and E  are a normal stress, a normal strain and Young’s modulus, respectively. The 

scaling factor 2 2

0 ieµ = � is the function of material constant, it consists of 0e and i� that are the 

material constant and internal characteristic lengths (such as the lattice spacing). In general, it is 

called the nonlocal parameter which is a factor to consider the effect of small length scale. 

According to Reddy and Pang [6], this parameter has been used in the classical method to 

investigate the bending, buckling and free vibration problems of beams. Based on the Euler’s beam 

theory, the equation of motion for free vibration of nanotube including the nonlocal elasticity can be 

written as 
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where ,m I  and u  are the mass per unit length, the moment of inertia and the transverse 

displacement, respectively. By using method of separated variables, Eq. 2 yields two ordinary 

differential equations; one is time dependent equation, the other one is spatial coordinate dependent 

equation. In case of a uniform cross-section element, the infinite set of  frequency parameter β  and 

the associated mode shape ( )xφ that satisfies the eigenvalue problem [7] defined by 

 
2( ) ( ) 0IV x xφ β φ− =           (3) 
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Thus, the general solution of fourth-order ordinary differential equation for Eq. 3 is 

 

1 2 3 4( ) sin cos sinh coshx C x C x C x C xφ β β β β β= + + +        (5) 

 

where 1 2 3, , ,C C C and 4C  are the unknown constants to be determined from the boundary conditions 

of the physical problem. For Eq. 4, � is the natural frequency of free vibration. The various end 

conditions namely Clamped-Free (C-F), Simply-Simply supported (S-S), Clamped-Simply 

supported (C-S) and Clamped-Clamped (C-C) are considered in this study. Finite element (FE) 

models have been assumed as an analogous frame for the structural system that atoms and covalent 

bond are represented as nodes and beam elements [8,9]. The chemical properties of carbon, the 

atomic mass is 231.9943 10−× g that is assigned on the ends of beam element in the FE models and 

atomic density is 161.36169 10−× nN/Å3 
[5]. For the mechanical properties, Young’s modulus, shear 

modulus, and Poisson’s ratio are taking as 10.0 nN/Å2, 4.0 nN/Å2, and 0.3, respectively. In addition, 

the nonlocal parametersµ  varying from 0.01-0.04 and 0.1-0.4 have been used to exhibit the trend of 

size effect when comparing those results obtained from the classical method and the FE models. 

Results and discussion 

Fig. 1 shows that the fundamental frequencies (GHz) versus aspect ratios (L/d) of the SWCNTs 

with various boundary conditions. It is found that the natural frequencies are significantly depended 

258 Multi-Functional Materials and Structures IV



 

  

   
 

Figure 1.  Fundamental frequencies of small diameter (0.4 nm) under the various boundary 

conditions: (a) C-F, (b) S-S, (c) C-S and (d) C-C 

 

on the boundary conditions and aspect ratios of tube. The results ofµ = 0.01 show that they are well 

acceptable as compared to those results from the FE models with the high aspect ratio (L/d > 6) as 

shown in the magnified area. For the results ofµ = 0.1, both methods are well correlated for the low 

aspect ratio (L/d < 2). For intermediate aspect ratios (2 < L/d <6), the results from the FE models lie 

in between the nonlocal parameters (µ  > 0.01 and µ  > 0.1). For example, the results with aspect 

ratio L/d = 5 are close to the values atµ = 0.02 as shown in Fig. 1(d). 

In cases of higher modes, the numerical results are exhibited on Table 1 forµ = 0.1. The repeated 

frequencies occur in many nearby mode shapes. For example, the repeated frequency of nanotube 

(9,9) C Cω − = 2.6637 GHz is found at the 3
rd

 and 4
th

 modes as shown in the last column on Table 1. 

In addition, the first-ten mode shapes with various boundary conditions are also presented in Fig. 2. 

 

Table 1. The natural frequencies for the first-ten mode with various conditions forµ =0.1 
Tube 

(n,m) (3,3) (9,9) (5,0) (26,0) (12,6) (20,10) (3,3) (9,9) 

dia.   (nm) 0.4 1.2 0.4 2.0 1.2 2.0 0.4 1.2 

L      (nm) 3.6 3.6 4.0 4.0 6.0 6.0 2.4 2.4 

L/d 9 3 10 2 5 3 6 2 

B.C. C-F C-F S-S S-S C-S C-S C-C C-C 

Mode no.                 

1 0.1493 0.3672 0.3031 0.9938 0.4615 0.5740 1.8897 2.5027 

2 0.1493 0.3673 0.5943 0.9957 0.5053 0.6008 1.8901 2.5033 

3 0.8720 1.2219 1.1501 1.0222 0.8071 0.7204 3.8234 2.6637 

4 0.8724 1.4982 1.5723 1.1345 1.2071 0.7245 4.4458 2.6637 

5 1.2136 1.4983 2.1251 1.8630 1.2010 0.7785 4.4463 3.8534 

6 1.5022 1.4990 2.4466 1.9476 1.3188 1.0614 4.6379 4.5947 

7 2.2338 1.7975 2.4469 1.9741 1.7538 1.0702 7.5953 4.5950 

8 2.2349 1.7976 2.9093 1.9843 1.7555 1.2726 7.5984 4.5991 

9 3.6464 2.1875 3.9476 2.2220 1.9551 1.3196 7.6890 4.6675 

10 3.9586 2.1876 4.2546 2.2974 1.9608 1.3436 9.2057 4.6678 

(a) (b) 

(c) (d) 
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Figure 2. The first-ten mode shapes depending on the boundary conditions: (a) C-F, (b) S-S, (c) C-S 

and (d) C-C 

 

Summary 

The equation of motion for the free vibration analysis of CNTs including the effect of nonlocal 

elasticity has been considered in this study.  The numerical results based on FE models are in good 

agreement with those obtained from the classical method. It can be concluded that the natural 

frequencies generally depend on atomic arrangements, tube lengths, tube diameters and boundary 

conditions. Furthermore, the natural frequencies increase with the decrease in the nonlocal 

parameters µ  and the repeated frequencies with different mode shapes are found in many places for 

various cases of the boundary conditions. 
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