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a b s t r a c t 

The conflict between strength and toughness is a long-standing challenge in advanced 

materials design. Recently, a fundamental bottom-up material design strategy has been 

demonstrated using cellulose nanopaper to achieve significant simultaneous increase in 

both strength and toughness. Fertile opportunities of such a design strategy aside, mecha- 

nistic understanding is much needed to thoroughly explore its full potential. To this end, 

here we establish a multiscale crack-bridging model to reveal the toughening mechanisms 

in cellulose nanopaper. A cohesive law is developed to characterize the interfacial prop- 

erties between cellulose nanofibrils by considering their hydrogen bonding nature. In the 

crack-bridging zone, the hydrogen bonds between neighboring cellulose nanofibrils may 

break and reform at the molecular scale, rendering a superior toughness at the macro- 

scopic scale. It is found that cellulose nanofibrils exhibit a distinct size-dependence in en- 

hancing the fracture toughness of cellulose nanopaper. An optimal range of the length- 

to-radius ratio of nanofibrils is required to achieve higher fracture toughness of cellu- 

lose nanopaper. A unified law is proposed to correlate the fracture toughness of cellulose 

nanopaper with its microstructure and material parameters. The results obtained from this 

model agree well with relevant experiments. This work not only helps decipher the funda- 

mental mechanisms underlying the remarkable mechanical properties of cellulose nanopa- 

per but also provides a guide to design a wide range of advanced functional materials. 

© 2017 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Many engineering structures require materials with both high strength and high toughness, but these two mechanical

properties are usually mutually exclusive. Overcoming the conflict between high strength and high toughness is a long-

standing challenge in advanced materials design ( Gao et al., 2003; Ji and Gao, 2004; Fu et al., 2008; Ritchie, 2011 ), and

there only exists limited success to address this challenge. Such existing efforts often involve material-specific and com-

plicated synthesis processes (e.g., growing high density nanotwins in metals ( Jang et al., 2012; Wei et al., 2014 ) and bulk

metallic glass with isolated dendrites ( Hoffman et al., 2008 )) and thus are not readily applicable to other materials. A gen-

eral material design strategy to address the conflict between strength and toughness still remains elusive. Recently, it has

been demonstrated that both the strength and toughness of cellulose nanopaper can be enhanced significantly by decreasing

the diameter of the constituent cellulose nanofibrils ( Henriksson et al., 2008; Zhu et al., 2015 ). The fundamental bottom-up

material design strategy underpinning the strong and tough cellulose nanopaper ( Zhu et al., 2015 ) is shown to be applicable
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U  
to other material systems, e.g., high performance carbon fibers ( Li et al., 2015 ). Further exploration of the rich potential of

such a general material design strategy requires fundamental understanding of the deformation and failure mechanisms of

cellulose nanopaper. For example, deciphering the dependence of the mechanical properties of cellulose nanopaper on their

constituent building blocks and microstructure is of particular significance for optimizing the performance of other related

advanced engineering nanomaterials. To this end, we here establish a multiscale theoretical model to quantitatively study

such dependence. 

Cellulose nanopaper is a transparent film made of network-forming cellulose nanofibrils. Henriksson et al. (2008) showed

that the plastic yield of cellulose nanopaper is associated with the debonding and slippage of cellulose nanofibrils. Un-

der a high shear stress, the interfacial hydrogen bonds between neighboring cellulose nanofibrils may break and reform,

and new nanofibril positions are then locked in. This deformation mechanism of cellulose nanopaper was confirmed by

Zhu et al. (2015) through atomistic simulations. González et al. (2014) found that cellulose nanopaper has much better

mechanical properties than regular paper due to the strong adhesion between cellulose nanofibrils and the high intrinsic

mechanical properties of nanocellulose. Zhu et al. (2015) demonstrated that the strength and toughness of cellulose nanopa-

per are even higher than those of carbon nanotube films. 

The crack-bridging model ( Bao and Suo, 1992 ) has been widely used to investigate the fracture problems of fiber-

reinforced composites. This model can evaluate the effects of fiber distribution, bridging size, and interfacial parameters

on the fracture toughness of composites ( Budiansky and Amazigo, 1989; Rubinstein and Xu, 1992; Bao and Song, 1993;

Meda and Steif, 1994; Liu et al., 1998 ). For example, Sun and Jin (2006) examined, by combining a crack-bridging zone and

a cohesive zone, the fracture toughness of composites with the fiber-bridging effect. Lin and Li (1997) considered the slip-

hardening interface for discontinuous, fiber-reinforced cement-based composites and predicted the enhanced toughness in

terms of the ultimate tensile strain and fracture energy of composites. Bertoldi et al. (2007) calculated the stress intensity

factor of a crack reinforced by discrete-bridging fibers. Chen et al. (2011) studied the toughness of nanocomposites rein-

forced by curved nanotubes. They described the toughness by using a function of the curvature, strength, and interfacial

friction resistance of nanotubes. Recently, Shao et al. (2012, 2014a, 2014b ) investigated the bridging toughening mechanism

of platelets in nacre and revealed a significant size effect of platelets on the fracture toughness of nacre. These efforts have

deepened our understanding of the toughening mechanisms of fiber-reinforced composites. 

It has been revealed that the interfacial hydrogen bonds between nanofibrils play a pivotal role in the toughening of cel-

lulose nanopaper ( Henriksson et al., 2008; Zhu et al., 2015 ). A quantitative correlation between the inter-molecular hydrogen

bonds and the inter-nanofibril adhesion properties is crucial for studying the mechanical properties of cellulose nanopaper.

Due to a lack of elaborate consideration on interfacial interaction at microscale, the crack-bridging models proposed pre-

viously for composites cannot be employed directly to analyze the mechanical properties of cellulose nanopaper. In this

paper, therefore, a multiscale theoretical model that correlates the fracture with microstructure is established to investigate

the toughening mechanisms in cellulose nanopaper. A cohesive law accounting for the inter-molecular chain hydrogen bonds

at the molecular scale is first developed to characterize the repeated breaking and reforming of interfacial hydrogen bonds

in the pullout process of neighboring cellulose nanofibrils. It is found that the fracture toughness of cellulose nanopaper

shows a distinct dependence on the sizes of cellulose nanofibrils, which should be in an optimal range in order to achieve

a higher fracture toughness of cellulose nanopaper. A unified law is given to correlate the toughness of cellulose nanopaper

with its microstructure and material parameters. The present model finds agreement with relevant experiments. 

2. Cohesive law of cellulose nanofibril interfaces 

We first develop a cohesive law for the interfaces between neighboring cellulose nanofibrils by considering their inter-

molecular chain hydrogen binding features. Cellulose is a linear chain of ringed glucose molecules with identical units,

each of which comprises two anhydroglucose rings (C 6 H 10 O 5 ) linked by C − O − C covalent bonds, as shown in Fig. 1 (a)

( Moon et al., 2011 ). Native cellulose exists in two different crystal forms, i.e., I α and I β ( Atalla and Vanderhart, 1984 ). Cellu-

lose molecular chains are assembled by intrachain hydrogen bonds into sheets that stack on top of each other to generate

crystalline nanofibrils ( 5 − 50 nm in diameter) ( Jarvis, 2003 ). The interchain hydrogen bonds between neighboring cellulose

molecules are primarily of the strong O6 − H · · · O3 type ( Qian et al., 2005 ). The superior mechanical properties of cellulose

nanopaper are attributed to the high adhesion between nanofibrils endowed by interchain hydrogen bonds ( González et al.,

2014; Zhu et al., 2015 ). The molecular structure and hydrogen bonds of neighboring cellulose molecular chains are shown

in Fig. 1 (b) ( Nishiyama et al., 2002; Parthasarathi et al., 2011 ). 

For a hydrogen bond D − H · · · A , the elements D and A are referred to as a hydrogen donor and a hydrogen acceptor,

respectively, as shown in Fig. 1 (c). The potential energy of a hydrogen bond can be expressed as ( Mayo et al., 1990 ) 

U(r) = U 0 

[
5 

(
s 

r 

)12 

− 6 

(
s 

r 

)10 
]

cos 4 θ, (1)

where U 0 is the hydrogen bond energy at the equilibrium distance, r is the distance between the donor D and the ac-

ceptor A, s is their equilibrium distance, and θ is the bond angle between D − H and H ���A at equilibrium. For the

O6 − H · · · O3 hydrogen bond among neighboring cellulose nanofibrils, s = 0 . 3 nm, θ = 150 ◦ ( Nishiyama et al., 2002 ), and

 0 = 20 kcal/mol = 1 . 39 × 10 −19 J/bond ( Parthasarathi et al., 2011 ). For simplicity, we only consider the variation in the poten-

tial energy of hydrogen bonds with respect to the donor–acceptor distance. 
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Fig. 1. (a) Molecular structure of a cellulose chain with repeated units. (b) Molecular structure and interfacial hydrogen bonds of neighboring cellulose 

molecular chains. (c) Hydrogen bond model. 

 

 

 

 

Consider an interface between two cellulose nanofibrils. Assume that the hydrogen bonds at the interface have an average

density per unit area, ρ . Then, the cohesive interface energy per unit area can be expressed as 

φ = ρU = ρU 0 cos 4 θ

[
5 

(
s 

a 

)12 

− 6 

(
s 

a 

)10 
]
, (2) 

where a is the averaged donor–acceptor length of hydrogen bonds at the interface. The equilibrium length a 0 is determined

from the minimization of the cohesive energy by using ∂ φ/∂ a = 0 at a 0 = s . 

When the interface opens to a normal displacement u beyond the equilibrium position, the donor–acceptor distance a in

the hydrogen bond becomes a 0 + u , as shown in Fig. 2 (a). Then, the cohesive energy density can be written as 

φ = ρU 0 cos 4 θ

[
5 

(
s 

a 0 + u 

)12 

− 6 

(
s 

a 0 + u 

)10 
]
. (3) 

Then the normal cohesive stress σ nc at the interface is 

σnc = 

∂φ

∂u 

= 60 ρU 0 cos 4 θ

[
s 10 

( a 0 + u ) 
11 

− s 12 

( a 0 + u ) 
13 

]
. (4) 

From the derivative of Eq. (4) with respect to u , one can obtain the normal cohesive strength or the maximum cohesive

stress 

σmax = 

120 

13 

(
11 

13 

) 11 
2 ρU 0 cos 4 θ

s 
, (5) 

and the corresponding opening displacement at the interface 

u 0 = 

[(
13 

11 

) 1 
2 

− 1 

]
s. (6) 
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Fig. 2. (a) Schematic of the interfacial interaction due to hydrogen bonds, and (b) the normal cohesive law of the interface. 

 

 

 

 

 

 

 

 

Besides, the initial slope of the cohesive stress–displacement curve expressed by Eq. (4) is 

d σnc 

d u 

∣∣∣∣
u =0 

= 

120 ρU 0 cos 4 θ

s 2 
. (7)

The normal cohesive law in Eq. (4) is shown in Fig. 2 (b). At the equilibrium position ( u = 0), the interfacial stress is zero.

As the interfacial spacing u increases from the equilibrium position, the cohesive traction σ nc first increases rapidly, reaches

the cohesive strength σ max at u = 0.09s, and then decreases gradually. 

For a shear displacement v beyond the equilibrium position, the donor–acceptor distance in the hydrogen bond becomes

a = 

√ 

a 2 
0 

+ v 2 , as shown in Fig. 3 (a). Then, the cohesive energy density per unit area can be expressed as 

φ = ρU 0 cos 4 θ

[ 

5 s 12 

(a 2 
0 

+ v 2 ) 6 
− 6 s 10 

(a 2 
0 

+ v 2 ) 5 

] 

. (8)

Then the shear cohesive stress τ sc at the interface is related to the displacement v by 

τsc = 

∂φ

∂v 
= 60 ρU 0 cos 4 θ

[ 

s 10 v 
(a 2 

0 
+ v 2 ) 6 

− s 12 v 
(a 2 

0 
+ v 2 ) 7 

] 

, (9)

as shown in Fig. 3 (b). The shear interfacial strength (maximum shear cohesive stress) is obtained from Eq. (9) as 

τmax = 

90 

7 

(
11 

14 

)6 ( 3 

11 

) 1 
2 ρU 0 cos 4 θ

s 
, (10)

and the corresponding relative slipping displacement is 

v 0 = 

(
3 

11 

) 1 
2 

s. (11)
Fig. 3. (a) Schematic of the interfacial shear interaction due to hydrogen bonds, and (b) the shear cohesive law of an interface. 
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Fig. 4. The pullout process of cellulose nanofibrils. (a) Initial configuration of nanofibrils before loading, (b) interfacial sliding of nanofibrils, and (c) the 

breaking and reforming of hydrogen bonds. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The initial slope of the shear stress curve is 

d τsc 

d v 

∣∣∣∣
v =0 

= 0 . (12) 

As can be seen from in Figs. 2 (b) and 3 (b), the cohesive shear stress shows a similar changing tendency to the normal

interfacial stress. It can be found that the shear cohesive strength of the interface depends primarily on the density of

interfacial hydrogen bonds. From Eq. (10) , the cohesive shear strength of the interface is determined as τmax = 30 MPa when

the density of hydrogen bonds is about ρ = 7 . 3 × 10 16 bonds/m 

2 . 

Cellulose nanopaper is composed of a network of cellulose nanofibrils with nanoscale pores. Upon stretching, the initially

entangled random cellulose nanofibrils tend to align along the tensile direction ( Zhu et al., 2015 ). In our model, therefore,

we assume that due to the high stress concentration at the crack tip, all nanofibrils in the crack-bridging zone are parallel

to each other and are normal to the crack surface. Fig. 4 illustrates the pullout process of a cellulose nanofibril, which in-

volves the breakage and reformation of hydrogen bonds at the interface between cellulose nanofibrils ( Zhu et al., 2015 ). Let

R denote the radius of cellulose nanofibrils, and L the overlapping length between neighboring nanofibrils ( Fig. 4 (a)). The

entire pullout process of a nanofibril can be divided into the following three stages: (i) In the beginning stage, the center

nanofibril undergoes only axial elastic deformation due to the small tensile load. (ii) As the load increases, the nanofibrils

slide relatively to each other, corresponding to large relative movements in the cohesive interface with hydrogen bond inter-

actions ( Fig. 4 (b)). (iii) When the interfacial stress or the sliding displacement reaches a critical value, the hydrogen bonds

begin to break and then reform at a new bond site. This process repeats until the center nanofibril is entirely pulled out

( Fig. 4 (c)). Since the cellulose nanofibrils interact with each other mainly through hydrogen bonds, the sliding stiffness of

their interfaces is much weaker than the stiffness of the nanofibrils themselves. In addition, the interfacial shear stress dis-

tribution depends on quite a few mechanical and geometric parameters, e.g., the stiffness and dimensions of the nanofibrils

and interfaces ( Liu et al., 2011 ). For simplicity, we assume that the cohesive shear stress is uniformly distributed over the

interface. 

In the pullout process, the tensile force acted on the nanofibril and the cohesive shear stress on the interface satisfies

the equilibrium condition: 

F = 2 πR (L − �) τc , (13) 

where � is the pullout length of the nanofibril with 0 ≤ � ≤ L . When the cohesive stress on the interface reaches the

cohesive shear strength τmax , one has 

F c = 2 πR (L − �) τmax . (14) 
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Fig. 5. Schematic of the crack-bridging model for cellulose nanopaper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For instance, we take the cohesive shear strength τmax = 30 MPa, the nanofibril radius R = 14 nm, the overlapping length

L = 10 0 0 nm, and the nanofibril pullout length � = 0 . Then it is known from Eq. (14) that the critical tensile force F c =
2 . 64 × 10 −6 N. 

3. Crack-bridging model of cellulose nanopaper 

Consider a mode-I crack in nanopaper subjected to uniform tension in the far field. During the propagation of the crack,

some nanofibrils will be pulled out at the front tip of the crack, leading to the formation of a crack-bridging zone. In this

zone, the cellulose nanofibrils repeat the breaking and reforming cycle of hydrogen bonds. In what follows, we will explore

the contribution of the crack-bridging mechanism to the fracture toughness of cellulose nanopaper. 

A microstructure-based crack-bridging model is proposed to analyze the fracture toughness of cellulose nanopaper, as

shown in Fig. 5 . The mode-I semi-infinite crack is subjected to a uniform tensile stress σ∞ 

along the y -direction in the

far field. Let l denote the length of the nanofibrils. The nanopaper, except the crack-bridging zone, is treated as a homoge-

neous, isotropic elastic solid with elastic modulus E ( Henriksson et al., 2008 ). Assume that the bridging zone length is much

smaller than the entire crack length, as observed in experiments ( Zhu et al., 2015 ). The left and right ends of the crack-

bridging zone are referred to as the physical crack tip and the virtual crack tip, respectively. The bridging nanofibrils play

a shielding role of stresses and eliminate the stress singularity at the crack tip. The fracture toughness can be calculated

in terms of the path-independent J -integral or the stress intensity factor K 

c 
I 

. In the present study, the modified J -integral

defined by Budiansky and Amazigo (1989) is used. The distributed bridging cellulose nanofibrils engender discrete bridging

concentrated forces in the crack-bridging zone, which are hard to be individually calculated. For simplicity, therefore the

bridging forces are treated by a continuous function of cohesive stress, σ b ( x ), as shown in Fig. 6 (a). The bridging stress

σ b ( x ) depends on the crack opening distance at position x via the cohesive law given in Section 2 . When the stress intensity

factor in the far field reaches a threshold, the crack will propagate in a steady manner, corresponding to a constant length

of the crack-bridging zone. The new bridging nanofibrils form at the front of the crack-bridging zone, whereas the bridged

nanofibrils in the rear will be completely pulled out. We will use the stress intensity factor to characterize the fracture

toughness of the material. 

3.1. Stress intensity factor 

When the nanopaper is subjected to a far-field tensile stress σ∞ 

, the stress intensity factor of the crack in the steady-

state of propagation can be written as 

K 

∞ 

I = K 

0 
I + K 

b 
I , (15)

where K 

0 
I 

is the intrinsic fracture toughness of the nanopaper. The intrinsic fracture toughness of a material reflects the

energy dissipation induced by microscopic damage mechanisms that happen around the crack tip during crack propagation

( Ritchie, 2011 ). K 

∞ denotes the stress intensity factor in the far field, and when the external stress intensity factor reaches

I 
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Fig. 6. (a) The homogenization of the bridging force in the crack-bridging zone and (b) the distribution of the bridging stress in the crack-bridging zone. 

 

 

 

 

 

 

 

 

 

 

a critical value, i.e., K 

∞ 

I 
= K 

c 
I 

, the crack will reach the steady-state of propagation, corresponding to the critical fracture

toughness of the material. K 

b 
I 

is the stress intensity factor induced by the bridging stresses of the cellulose nanofibrils

within the crack-bridging zone. It can be calculated by ( Budiansky and Amazigo, 1989 ) 

K 

b 
I = 

√ 

2 

π

∫ λ

0 

σb (x ) √ 

λ − x 
d x, (16) 

where λ is the length of the crack-bridging zone, and σ b ( x ) the cohesive tensile stress in the crack-bridging zone. 

In reality, the bridging cellulose nanofibrils are randomly distributed on the crack surfaces within the crack-bridging zone.

Let ρ1 denote the average number of bridging nanofibrils per unit area within the crack-bridging zone. Then, the volume

fraction of nanofibrils in the material is 

V bf = πR 

2 ρ1 . (17) 

Denote the pullout length of a nanofiber at coordinate x in the crack-bridging zone as δ( x ); then the corresponding crack

opening displacement at this position also equals δ( x ). The maximum pullout length of the bridging nanofibrils is taken as
l 
2 , which equals the maximum crack opening displacement at the crack tip. Because the hydrogen bonds keep breaking and

reforming during the pullout process, the bridging force induced by a nanofibril at position x can be expressed as 

F (x ) = πR τmax [ l − 2 δ(x )] . (18) 

The bridging stress at position x is 

σb (x ) = πρ1 R τmax [ l − 2 δ(x )] . (19) 

Substituting Eq. (17) into (19) gives 

σb (x ) = 

V bf τmax [ l − 2 δ(x )] 

R 

. (20) 

The distribution of the bridging stress in the crack-bridging zone is shown in Fig. 6 (b). Using Eqs. (16) and (20) , the stress

intensity factor induced by the bridging stresses can be derived as 

K 

b 
I = 2 

√ 

2 

π

V bf τmax 

R 

[√ 

λl −
∫ λ

0 

δ(x ) √ 

λ − x 
d x 

]
. (21) 

It is seen that the contribution of the crack bridge to the toughness, K 

b 
I 

, is dependent on the sizes of cellulose nanofibrils,

the length of the crack-bridging zone, the cohesive shear strength of intra-nanofibril interface, and the volume fraction of

nanofibrils. 
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3.2. Crack opening displacement 

To calculate the length of the crack-bridging zone and the stress distribution in it, one needs to first determine the crack

opening displacement δ( x ). For a mode-I semi-infinite crack in an isotropic material, the crack opening displacement can be

expressed as ( Budiansky and Amazigo, 1989; Shao et al., 2012 ) 

δ(x ) = 

8 K 

∞ 

I 

√ 

λ − x √ 

2 πE 
− 4 

πE 

∫ λ

0 

σb (ζ ) ln 

√ 

λ − x + 

√ 

λ − ζ∣∣∣√ 

λ − x −
√ 

λ − ζ
∣∣∣d ζ . (22)

The first term in Eq. (22) arises from the far-field stress intensity factor, and the second term is caused by the bridging

stresses. Substituting Eqs. (15) , (20) , and (21) into Eq. (22) , the crack opening displacement in the crack-bridging zone is

obtained as 

δ(x ) = 

8 K 

0 
I 

√ 

λ − x √ 

2 πE 
+ 

4 V bf l τmax 

πER 

[
2 

√ 

λ(λ − x ) − x ln 

√ 

λ + 

√ 

λ − x √ 

λ − √ 

λ − x 

]

+ 

8 V bf τmax 

πER 

∫ λ

0 

δ( ζ ) 

⎛ 

⎝ ln 

√ 

λ − x + 

√ 

λ − ζ∣∣∣√ 

λ − x −
√ 

λ − ζ
∣∣∣ − 2 

√ 

λ − x √ 

λ − ζ

⎞ 

⎠ d ζ

. (23)

It is noted that δ( x ) in the crack-bridging zone monotonically decreases with increasing x and satisfies 

0 < δ(x ) ≤ l 

2 

. (24)

A numerical method will be employed to solve δ( x ), with the details given in Appendix A . 

3.3. Toughening ratio 

After the crack opening displacement and the stress intensity factor in the crack-bridging zone have been solved from

Eqs. (21) and (23) , we can evaluate the toughening effect of the bridging nanofibrils. To this end, we define the toughening

ratio � as 

� = 

K 

b 
I 

K 

0 
I 

= 2 

√ 

2 

π

V bf τmax 

K 

0 
I 

R 

[√ 

λl −
∫ λ

0 

δ(x ) √ 

λ − x 
dx 

]
. (25)

For a crack propagating in a steady state, the length of the crack-bridging zone keeps a constant value, λS . The corre-

sponding toughening ratio �S due to the crack-bridging mechanism is 

�S = 

K 

bs 
I 

K 

0 
I 

= 2 

√ 

2 

π

V bf τmax 

K 

0 
I 

R 

[ √ 

λS l −
∫ λS 

0 

δ(x ) √ 

λS − x 
dx 

] 

, (26)

which is the maximal toughening ratio due to the bridging effect of cellulose nanofibrils. 

In addition, the axial stress in a nanofibril should be below its ultimate strength σ s , that is, 

2 πR τmax 

[
l 

2 

− δ(x ) 

]
≤ πR 

2 σs . (27)

At the virtual crack tip, the crack opening displacement is very small and the corresponding pullout length δ( x ) of

nanofibrils is close to zero. Then we have 

l ≤ R σs 

τ
. (28)
max 

Table 1 

Parameters used in the calculations. 

Parameters Value References 

Elastic modulus E 13.5 GPa Sehaqui et al. (2011) 

Fracture toughness K 0 I 1 MPa m 

1/2 —

Interfacial shear strength τ max 30 MPa —

Nanofibril volume fraction V bf 40% —

Interfacial thickness l 0 0.3 nm Nishiyama et al. (2002) 

Nanofibril radius R 14 nm Zhu et al. (2015) 

Nanofibril length l 1.5 μm Moon et al. (2011) 

Nanofibril strength σ s 7.5 GPa ∗ Moon et al. (2011) 

∗ This value is the upper limit of the tensile strength of cellulose nanofibrils. 
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Fig. 7. (a) Crack opening displacement in the crack-bridging zone under steady crack propagation for different cellulose nanofibril radii. Bridging zone 

length (b) and toughening ratio (c) with respect to the nanofibril radius for steady crack propagation. 

 
Let l c denote the maximum length of nanofibrils with a given radius R that achieves the strongest toughening effect, and

R c the minimum radius of nanofibrils with a fixed radius l . They are given respectively by 

l c = 

R σs 

τmax 
, R c = 

l τmax 

σs 
. (29) 

Eqs. (28) and (29) give the optimal sizes of nanofibrils, which help design nanopaper with high fracture toughness. 
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4. Results and discussions 

4.1. Size effects of nanofibrils 

Now we examine the effects of nanofibril sizes on the crack-bridging toughening mechanism in cellulose nanopaper. The

material parameters used in our calculations are listed in Table 1 . The crack opening displacement δ( x ) in the crack-bridging

zone is solved from Eq. (23) , and the toughening ratio � is obtained from Eq. (25) . As the applied load increases, more

and more nanofibrils are pulled out from the crack surfaces, leading to an extension of the crack-bridging zone and an

increase in the crack opening displacement. When the crack opening displacement reaches the maximum value, i.e. δ = 

l 
2 ,

the crack-bridging zone will approach a stable length. Then, the crack enters a steady state of propagation, corresponding to

a constant crack-bridging zone length. Therefore, from the condition δ = 

l 
2 , we determine the length of the crack-bridging

zone λS and the toughening ratio �S . 

It is hard to make a direct experimental measurement of the intrinsic fracture toughness of cellulose nanopaper. For

cellulose nanopaper with the nanofibril radius R = 5.5 nm, Zhu et al. (2015) measured the critical strain energy release rate

G c = 1481.4 J/m 

2 . Using the relation K 

c 
I 

= 

√ 

G c E , the fracture toughness of nanopaper is determined as K 

c 
I 

= 4.5 MPa m 

1/2 .

When the nanofibril radius is 14 nm, the strain energy release rate is measured as G c = 467.5 J/m 

2 , corresponding to the

fracture toughness K 

c 
I 

= 2.5 MPa m 

1/2 . These experiments indicate that the mechanical properties of cellulose nanopaper ex-

hibit significant size effect: the thinner the nanofibrils, the higher the fracture toughness. This size effect can be understood

as follows: for a fixed volume fraction of nanofibrils, the decrease in the nanofibril radius will enhance the overall interface

area and the number of hydrogen bonds, and thereby yield a significant increase in the fracture toughness of nanopaper.

Rich hydroxyl groups along cellulose molecular chains allow for facile formation and reformation of hydrogen bonds at the

nanofibril interfaces, leading to an enhanced toughening effect. Zhu et al. (2015) estimated the intrinsic fracture toughness

K 

0 
I 

of cellulose nanopaper with the order of 1 MPa ·m 

1/2 . Therefore, we take K 

0 
I 

= 1 MPa ·m 

1/2 in this study. 

For a crack in the steadily propagating state, Fig. 7 (a) shows the crack opening displacement δ( x ) in the crack-bridging

zone. It can be seen that δ( x ) decreases gradually as the position x approaches the crack tip. For a small nanofibril radius

(e.g., R = 5 nm), the crack opening displacement decreases relatively rapidly. For steadily propagating crack, Fig. 7 (b) and (c)

show the bridging zone length and the toughening ratio with respect to the nanofibril radius, respectively. It is seen from

Fig. 7 (b) that the length of the crack-bridging zone exponentially increases as the nanofibril radius increases, demonstrating

that the thinner nanofibrils can render a stronger toughening effect. The steady toughening ratio decreases gradually as the

radius of nanofibrils increases. This is because for a given volume fraction of nanofibrils, the smaller the nanofibril radius, the

larger the total surface area of the nanofibrils in the crack-bridging zone and, hence, the stronger the bridging toughening

effects. This behavior reveals the dependence of the mechanical properties of cellulose nanopaper on the nanofibril radius:

the smaller the radius, the greater the fracture toughness. In addition, the lower limit for the nanofibril radius is found

from Eq. (28) to be 8 nm since the tensile stress of nanofibrils should be lower than its ultimate strength; otherwise, the

nanofibrils will break before being pulled out. The bridging toughening effect of nanofibrils will be reduced when the radius

of nanofibrils is smaller than this lower limit. To achieve a remarkable toughening effect, therefore, the radius of nanofibrils

should be optimized in an optimal range, which is dictated by both the overall toughening ratio at the macro scale and the

tensile strength of the fibrils themselves at the micro scale. 

To verify the present model, we compare the theoretical fracture toughness predicted by Eqs. (15) and (26) with the

experimental measurements ( Zhu et al., 2015 ), as shown in Fig. 8 . It can be observed that the theoretical results agree well

with the experimental data. For example, our theoretical model predicts that as the radius of cellulose nanofibrils decreases
Fig. 8. Comparison of the fracture toughness of cellulose nanopaper predicted by the present model (triangles) and measured in experiments (squares) 

( Zhu et al., 2015 ). 
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Fig. 9. (a) Crack opening displacement in the crack-bridging zone of a steadily propagating crack under several different cellulose nanofibril lengths. (b) 

The bridging zone length and (c) the toughening ratio with respect to the nanofibril length. 

 

 

 

 

 

 

 

from R = 14 nm to 5 nm, the fracture toughness of cellulose nanopaper varies from K 

c 
I 

= 2.7 MPa m 

1/2 to 4.3 MPa m 

1/2 , and

the corresponding experimental values are 2.5 MPa m 

1/2 and 4.5 MPa m 

1/2 , respectively. 

For a crack propagating in a steady state, Fig. 9 (a) shows the crack opening displacement in the crack-bridging zone

under a few representative values of cellulose nanofibril lengths. The fracture toughness of nanopaper also exhibits a size

dependence on the length of the nanofibrils. Increasing the nanofibril length will lead to a larger bridging zone length and

a larger crack opening displacement. Fig. 9 (b) and (c) show the effects of the nanofibril length on the bridging zone length

and toughening ratio, respectively. Both of them increase with the increase in the cellulose nanofibril length, suggesting that

longer nanofibrils will render a longer crack-bridging zone and a higher toughening ratio. However, the length should be
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Fig. 10. Contours of the toughening ratio �S with respect to the geometric dimensions of nanofibrils. The red, cyan, and yellow regions give the ranges of 

nanofibril sizes that yield the toughening ratio �s = 2 . 0 , 3.0, and 4.0, respectively. (For interpretation of the references to color in this figure legend, the 

reader is referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

shorter than a certain limit dictated by the tensile strength of the nanofibrils such that they will not be broken before being

pulled out. The upper limit of nanofibril length is about 3.5 μm in line with Eq. (28) and Table 1 . 

The above analysis reveals a strong dependence of the fracture toughness of nanopaper on the radius and length of

nanofibrils. To achieve a high toughening ratio, the nanofibril sizes should be in an optimal range. Fig. 10 illustrates the

contours of the toughening ratio �S with respect to the geometric dimensions of nanofibrils. It is known from Eq. (28) that

the aspect ratio of nanofibrils should be l / R ≤ 250 when τmax = 30 MPa and σs = 7 . 5 GPa. If one wants to design a nanopaper

with a toughening ratio �S greater than 2.0, for instance, the nanofibril sizes should be optimized in the shadow region

in Fig. 10 . Thus, an effective way is here indicated to guide the design of cellulose nanopaper with desired mechanical

properties. 

4.2. Effects of interfacial strength 

In essence, the hydrogen bonds at the interfaces between nanofibrils play a key role in the toughening of cellulose

nanopaper. For a crack steadily propagating in nanopaper, Fig. 11 (a) shows the crack opening displacement in the crack-

bridging zone under a few representative interfacial strengths τmax between cellulose nanofibrils. The change in τmax from

10 MPa to 60 MPa corresponds to an increase in the hydrogen bond density per unit area, ρ , from 2.5 × 10 16 bonds/m 

2

to 1.5 × 10 17 bonds/m 

2 . The bridging zone length increases gradually with increasing interfacial strength. A higher inter-

facial strength gives rise to a smaller crack opening displacement. Obviously, the strong interfacial adhesion between

cellulose nanofibrils tends to hinder the crack propagation. For a steadily propagating crack, Fig. 11 (b) and (c) plot the

variations in the bridging zone length and the toughening ratio with respect to the interfacial strength between cellu-

lose nanofibrils. It can be observed that with increasing interfacial strength, the length of the crack-bridging zone de-

creases exponentially, whereas the steady toughening ratio increases approximately linearly. This result shows that, as

expected, improving interfacial strength or hydrogen bond density will result in a higher toughening ratio in nanopa-

per. In essence, the higher fracture toughness of cellulose nanopaper is attributed to the reformation of hydrogen bonds

at the nanofibril interfaces. During the pullout process of a nanofibril, its interfacial stress retains the constant τ max

( Fig. 11 d). Without the reformation mechanism, the cohesive shear stress would reduce to the interfacial friction trac-

tion τ 0 after the breaking of hydrogen bonds ( Fig. 11 d). In general, τ 0 is much smaller than τmax , and thus the ab-

sence of the hydrogen bond reformation mechanism would significantly reduce the fracture toughness, as shown in

Fig. 11 c. Therefore, the formation feature of hydrogen bonds plays a pivotal role in the mechanical behavior of cellulose

nanopaper. 

4.3. Effects of elastic modulus 

We next examine the effects of the elastic modulus of nanopaper on its fracture toughness. As a porous material, cellu-

lose nanopaper has a relatively high porosity, which significantly influences its macroscopic mechanical properties. As the

porosity increases from 19% to 40%, the elastic modulus of nanopaper decreases from 14.7 GPa to 7.4 GPa ( Henriksson et al.,

2008 ). 

Fig. 12 (a) shows the variation in the bridging zone length of a steadily growing crack with respect to the elastic modulus

of nanopaper. It is seen that a higher elastic modulus of nanopaper leads to a longer bridging zone, suggesting that the

enhanced elastic modulus of nanopaper can better resist the propagation of a crack. The toughening ratio with respect to
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Fig. 11. (a) Crack opening displacement in the crack-bridging zone in a steadily propagating crack under different interfacial strengths between cellulose 

nanofibrils. (b) The bridging zone length and (c) the toughening ratio with respect to the interfacial strength. (d) Cohesive models for the interfacial shear 

stress between cellulose nanofibrils with (red solid line) or without (blue dashed line) hydrogen bond reformation mechanism. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

 

 

 

the elastic modulus of nanopaper is shown in Fig. 12 (b). The steady toughening ratio increases as the elastic modulus of

nanopaper increases. Interestingly, this indicates the possible simultaneous achievement of high elastic modulus and high

fracture toughness in cellulose nanopaper. Therefore, one should reduce the porosity of cellulose nanopaper in order to

improve its mechanical property. 
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Fig. 12. (a) The bridging zone length and (b) the toughening ratio with respect to the elastic modulus of nanopaper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.4. Effects of the volume fraction of bridging nanofibrils 

We next analyze the effects of the volume fraction of bridging nanofibrils on the fracture toughness of nanopaper.

Fig. 13 (a) shows the crack opening displacement in the crack-bridging zone under steady crack propagation for different

volume fractions of bridging nanofibrils. It can be found that the crack opening displacement has a smaller value when the

volume fraction of bridging nanofibrils is higher. This shows that the enhanced volume fraction of the bridging nanofibril

can effectively restrict crack propagation. The bridging zone length and toughening ratio with respect to the volume frac-

tion of bridging nanofibrils for steady crack propagation are shown in Fig. 13 (b) and (c). As the volume fraction of bridging

nanofibrils increases, the steady bridging zone length decreases, whereas the steady toughening ratio increases. The en-

hancement of the volume fraction can reduce the length of the crack-bridging zone and improve the bridging toughening

ratio and hence, improve the fracture toughness of cellulose nanopaper. 

4.5. A unified law for fracture toughness 

In the above analysis, we have established the relations between the bridging-toughening ratio and the microstructural

parameters of cellulose nanopaper. In this Section, we will perform a dimensional analysis to provide a unified law to

correlate the fracture toughness of nanopaper with its microstructure and toughening mechanism. 

According to Eqs. (23) and (26) , the normalized toughening ratio of cellulose nanopaper should be a function of the

following independent parameters 

�S = f (E, τmax , K 

0 
I , V bf , l, R ) , (30)

where f is a function as yet to be determined. Among the parameters in Eq. (30) , there exist only two independent dimen-

sions, which may be taken as K 

0 
I 

and R . Applying the Pi theorem to Eq. (30) gives 

�S = f 

(
E 
√ 

l 

K 

0 
I 

, 
τmax 

√ 

l 

K 

0 
I 

, V bf , 
l 

R 

)
. (31)
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Fig. 13. (a) Crack opening displacement in the crack-bridging zone under steady crack propagation under different volume fractions of bridging nanofibrils. 

Bridging zone length (b) and toughening ratio (c) with respect to the volume fraction of bridging nanofibrils for steady crack propagation. 

 

 

 

Using Eqs. (23) , (26) , and (31) , we obtain the following approximate relation: 

�S = f (�) , (32) 

with � = 

V bf E τmax l 
2 

(K 0 
I 
) 

2 
R 

. 

Fig. 14 shows the variation of the toughening ratio �S with respect to the dimensionless parameter � under different

combinations of material parameters, including nanofibril size, interfacial strength, Young’s modulus of nanopaper, and vol-

ume fraction of bridging nanofibrils. It can be seen that almost all data collapse to the same curve, which can be expressed
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Fig. 14. Variation of the toughening ratio �S with respect to the dimensionless parameter � = V bf τmax E l 
2 / (K 0 I ) 

2 R . The data points here correspond to the 

following ranges of parameters: 5 ≤ R ≤ 40 nm, 1 ≤ l ≤ 4 μm, 10 ≤ τ max ≤ 60 MPa, 5 ≤ E ≤ 20 GPa, and 20% ≤ V bf ≤ 50%. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

via numerical fitting as 

�S = f (�) = 7 . 6 − 7 . 1 exp 

(
− �

136 . 5 

)
. (33)

Therefore, according to Eqs. (15) , (25) , and (33) , the fracture toughness of cellulose nanopaper can be written as 

K 

c 
I = ( �S + 1) K 

0 
I = 

[
8 . 6 − 7 . 1 exp 

(
− �

136 . 5 

)]
K 

0 
I . (34)

Eq. (34) provides a simple theoretical law capturing the relation between the fracture toughness and material parameters

of cellulose nanopaper. Given the general applicability of the bottom-up material design strategy obtained from cellulose

nanopaper, the above unified law emerging from the present study could be of broad interest in guiding the optimal design

of a wide range of engineering materials with superior mechanical properties. 

5. Conclusions 

In this paper, a multiscale crack-bridging model has been developed to analyze the effects of bridging toughening of

nanofibrils on the fracture toughness of cellulose nanopaper. A cohesive law of the interface between cellulose nanofibrils

is proposed to link the atomistic level hydrogen bond interaction with the macroscopic interface properties. It is found that

both the bridging toughening of nanofibrils and the hydrogen bonds between cellulose nanofibrils serve as significant roles

in the toughening mechanisms of cellulose nanopaper. The fracture toughness of cellulose nanopaper has a size dependence

on the length and radius of nanofibrils. The thinner and longer nanofibrils can more effectively enhance the crack resistance

of cellulose nanopaper. An optimal nanofibril geometry is suggested to achieve a high toughening effect of cellulose nanopa-

per. Furthermore, a simple unified law emerges from the present theoretical model, which captures the relation between

the fracture toughness and material parameters of cellulose nanopaper. Our model not only sheds light on the underlying

toughening mechanisms of cellulose nanopaper, but also offers guidelines for the design and optimization of other advanced

functional materials. 
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Appendix A 

The crack opening displacement δ( x ) and the bridging toughening ratio � in the crack bridging zone are obtained by

numerically solving Eqs. (23) and (25) via the following steps: 

(1) We first consider an initial value of the bridging zone length λ; the value of λ gradually increases in the calculation

process, which reveals the propagation of the crack-bridging zone. For each λ, the bridging zone (0 < x < λ) is

divided into N subintervals ( N = 

λ
�x 

) with sequentially numbered points 0 < x 1 < ��� < x i < ��� < x N < λ, where

x i = (i − 1 
2 )�x , and �x is the length of the subintervals, as shown in Fig. A1 . The crack opening displacements at

those points are denoted by δ( x ). 
i 

http://dx.doi.org/10.13039/501100001809
http://dx.doi.org/10.13039/501100002858
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Fig. A1. Schematic of the numerical discretization in the crack-bridging zone. 

 

 

 

 

 

 

 

 

 

 

 

 

(2) Applying Eq. (23) , the crack opening displacement δ( x i ) for the each position x i can be given by 

δ( x i ) = 

8 K 

c 
I 

√ 

λ − x i √ 

2 πE 
+ 

4 V bf l τmax 

πER 

[ 

2 

√ 

λ(λ − x i ) − x i ln 

√ 

λ + 

√ 

λ − x i √ 

λ −
√ 

λ − x i 

] 

+ 

8 V bf τmax �x 

πER 

N ∑ 

j=1 
j � = i 

δ( x j ) 

⎛ 

⎝ ln 

√ 

λ − x i + 

√ 

λ − x j ∣∣∣√ 

λ − x i −
√ 

λ − x j 

∣∣∣ − 2 

√ 

λ − x i √ 

λ − x j 

⎞ 

⎠ 

+ 

8 V bf τmax �xδ( x i ) 

πER 

( 

ln 

√ 

λ − x i + 

√ 

λ − x i − ξ√ 

λ − x i −
√ 

λ − x i − ξ
− 2 

) 

, (A1) 

where ξ is a small positive constant and ξ = 10 −11 . 

(3) From the displacement equation at each position x i , we can obtain the linear equations with unknowns δ( x i ), i =
1 , 2 , · · · , N. By solving the equations, the crack opening displacement for the entire bridging zone can be obtained. 

(4) For each λ, we obtain the bridging toughening ratio by the following equation using the crack opening displacement

δ( x i ) at each position x i : 

� = 2 

√ 

2 

π

V bf τmax 

K 

c 
I 
R 

[ 

√ 

λl −
N ∑ 

i =1 

�xδ( x i ) √ 

λ − x i 

] 

. (A2) 

(5) When the crack opening displacement reaches δ( x N ) ≥ l 
2 , the calculation will stop, indicating that the bridging tough-

ening ratio arrives at a saturated state and the crack propagation enters a steady stage. In addition, we can obtain the

bridging zone length λS and the toughening ratio �S for the steadily propagating crack. 
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