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a b s t r a c t 

When inflating a rubber balloon, it is commonly concluded that a sudden expansion in 

balloon size (i.e., the burst) occurs once the inner pressure reaches a critical threshold, the 

instantaneous burst pressure. Such burst phenomena are usually attributed to the snap- 

through instability. In this work, we demonstrate that when a hydrogel balloon is subject 

to a subcritical pressure lower than the instantaneous burst pressure, the hydrogel balloon 

may remain stable for a span of time, and then burst suddenly. We refer to such burst 

phenomena as the delayed burst of the gel balloon. When subject to such a subcritical in- 

ner pressure, a hydrogel balloon slowly and continuously absorbs solvent and swells. We 

find the instantaneous burst pressure of the hydrogel balloon to be a decreasing function 

of swelling ratio. The criterion for the onset of burst is that the swelling-related instanta- 

neous burst pressure drops to the applied inner pressure. The delayed burst can, therefore, 

be attributed to the time needed for the hydrogel swelling to reduce the instantaneous 

burst pressure to the level of applied pressure. We further delineate a map indicating 

three distinct deformation modes of gel balloons, i.e., instantaneous burst, delayed burst, 

and steady deformation without burst (safe mode), in the parameter space of applied pres- 

sure and mechanical properties of the hydrogel. The delayed burst of a hydrogel balloon is 

counterintuitive and a crucial aspect in developing hydrogel-shell-based soft actuators and 

soft machines. The research findings may shed light on the understanding of the complex 

failure mechanisms of hydrogel actuators and also facilitate the design of hydrogel-based 

tissue delivery capsules. 

© 2018 Published by Elsevier Ltd. 

 

 

 

 

 

1. Introduction 

Hollow thin-shell structures have found widespread applications from as small as nano-anodes in Li-ion batteries

( Yao et al., 2011 ) to as large as radar domes and fuel tanks ( Godoy, 2016 ). The past decade has witnessed a wealth of

attentions paid to soft thin shells, which represent a paradigm shift in research interests from conventional rigid structures

to deformable, inflatable, and multifunctional components. For instance, the use of soft polymeric thin shells has been em-

braced as a trending strategy for soft actuator and soft robot design: inflated either pneumatically or hydraulically, such a
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strategy provides a promising avenue for agile and swift actuation. By controlling the pressurization of each individual joint

in concert with the others, the actuators are able to achieve complex motions, such as walking ( Ainla et al., 2017; Nemiroski

et al., 2017; Shepherd et al., 2011 ), jumping ( Bartlett et al., 2015 ), swimming ( Marchese et al., 2014; Yuk et al., 2017 ), and

gripping ( Acome et al., 2018 ). For example, Wehner et al. successfully prototyped a soft octopus-like robot and controlled

its motion via an embedded microfluidic system ( Wehner et al., 2016 ); Acome et al. designed a soft gripper driven by the

localized inflation of a hollow structure by electrostatically directing the motion of liquid dielectrics ( Acome et al., 2018 );

Kim et al. demonstrated a multifunctional inflatable catheter as a surgical tool that delivers therapy and diagnosis to desired

local lesions ( Kim et al., 2011 ). Despite successful applications of soft polymeric thin-shell structures in soft actuators and

medical devices, their applications in biomedical engineering and tissue engineering are often hindered by poor biocompat-

ibility arising from the physical dissimilarity between polymeric materials and living tissues. 

Hydrogels are composed of considerable amount of water and a polymer network. This unique combination provides

biocompatibility, permeability, and deformability. For this reason, hydrogel thin-shell structures such as hydrogel capsules 

have emerged in a myriad of biomedical applications such as in vitro 3D tissue culture ( Lu et al., 2015; Mytnyk et al., 2017a;

Song et al., 2015; Zhao et al., 2014 ), biomedical sensors ( Alessandri et al., 2013 ), cell-based therapy development ( Lima et al.,

2013; Olabisi et al., 2010; Wang and Wang, 2014 ), drug delivery ( Luo et al., 2014 ), and bio-mimicking structures ( Yoshida and

Onoe, 2017 ). Alessandri et al. described a method to culture tumor cellular aggregations encapsulated in cross-linked alginate

hydrogel shells. By monitoring the expansion or even burst of the hollow spherical hydrogel shells, the growth of tumor cells

under mechanical confinement can be directly investigated ( Alessandri et al., 2013 ). In addition, for applications such as drug

release ( Li and Mooney, 2016 ) and cell therapy ( Griffin et al., 2015 ), the burst and degradation of the hydrogel capsule play

a pivotal role. That is, the burst event has to precisely concur with the drug’s arrival at the delivery target or the tissue’s full

development. A premature release only results in an unsuccessful delivery of underdeveloped tissues, whereas a late burst

may cause adverse reactions ( Alijotas-Reig et al., 2013; Griffin et al., 2015 ). Therefore, understanding the deformation and

burst mechanism is the key to successful applications of hydrogel thin-shell structures in biomedical and tissue engineering.

Inflation and burst of an elastomeric thin-walled structure have long been a focal topic of solid mechanics. One of the

earliest accounts of the inflation of a rubber balloon is predicted analytically by Feodos’ev (1968) . This pioneering work was

followed by others with their main attention devoted to the inflation response of hyperelastic materials with different con-

stitutive assumptions ( Alexander, 1971; Bogen and McMahon, 1979; Merritt and Weinhaus, 1978; Needleman, 1977 ) and of

different geometries ( Chen and Healey, 1991; deBotton et al., 2013 ). According to these classical notes, it is both observed ex-

perimentally and concluded theoretically that, when inflating a rubber balloon, a sudden expansion in balloon size (i.e., the

burst) occurs once the inner pressure reaches a critical threshold, the instantaneous burst pressure. Such burst phenomena

are commonly attributed to the snap-through instability. Based on these understandings, most recent research interests are

also directed to harness such snap-through instability to our benefit, such as achieving enhanced actuation performances

of soft actuators ( Li et al., 2013; Overvelde et al., 2015 ), or to investigate the highly enriched deformation bifurcations of

electrically active soft materials due to instability ( Lu et al., 2015; Wang et al., 2017 ). 

Despite extensive studies on elastomeric thin-walled structures, the instability of hollow hydrogel structures is far from

being well understood. Wang and Cai investigated drying-induced growth of inner cavity in confined hollow spherical hy-

drogels Wang and Cai, 2015a ), however, in that study, the inflation of the hydrogels is restricted by a rigid confinement

at its outer surface. Alessandri et al. experimentally observed growth-induced bursts of spherical hydrogel capsules in the

culture of tumor tissue, however, a quantitative mechanistic understanding of the burst of hydrogel capsules remains elusive

( Alessandri et al., 2013 ). To address these unsolved issues, a systematic study of inflation and burst of hollow thin-walled

hydrogel structures should be carried out. Most recently, Zamani and Pence investigated the swelling-induced burst of a

swellable Mooney–Rivlin spherical shell ( Zamani and Pence, 2017 ): the pressure-expansion response was simply studied by

assigning an increasing swelling factor to the elastic shell; However, some key questions still remain unclear in their study:

(1) What is the underlying physics bestowing the swellable behavior of the hyperelastic network? (2) Will the balloon shell

further swell under inner pressurization? (3) If the further swelling indeed occurs, what serves as the driving force and to

what extent the balloon shell will swell? In the present paper, we will directly answer these open questions. 

As aforementioned, hydrogels intrinsically differ from elastomers and polymers. In hydrogel, the polymer chains are in-

teracting with water molecules by weak intermolecular forces. When a hydrogel is in contact with an aqueous environment

and subject to mechanical loads and confinements, water migrates in and out of the hydrogel to accommodate the applied

loads and boundary conditions. Therefore, the deformation behavior and the failure of a hydrogel structure also deviate from

its water-free elastomeric counterparts. For example, when a hydrogel sample containing a pre-crack is subject to a static

load less than the critical load for instantaneous fracture, the pre-crack initially remains virtually stationary for some time,

followed by sudden and rapid propagation, causing catastrophic fracture. Such a fracture mode of hydrogel is referred to

as delayed fracture ( Bonn et al., 1998; Mao and Anand, 2018; Tang et al., 2017; Wang and Hong, 2012a ), which is usually

attributed to viscoelasticity stemming from the mechano-chemical reaction in stressed molecular chains ( Chaudhury, 1999;

Skrzeszewska et al., 2010 ), dissociation of physical crosslinks ( Baumberger et al., 2006; Lindström et al., 2012 ), and migration

of water molecules ( Wang and Hong, 2012a ). Nonetheless, existing investigations into the delayed failures of hydrogels are

primarily limited to their fracture. 

Herein, we unveil the delayed burst of hollow spherical thin-walled hydrogel structures (i.e., hydrogel balloons), a failure

mode that has not as yet investigated. Under an interior pressure, a hydrogel balloon gradually and continuously absorbs wa-

ter and swells. This fact leads to the anomalous delayed burst behavior of a hydrogel balloon: when subject to a subcritical
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Fig. 1. Schematic of the inflation process of a hydrogel balloon. (a) The dry state of a hydrogel balloon with its radius being R and thickness H , where 

H � R . (b) The free-swelling equilibrium state of the hydrogel balloon in water. (c) The inflated states of the balloon under an inner pressure P . Dashed-line 

shell: instant deformation under a fast pressurization ( t p � t eq ); solid-line shell: long-term final deformation of the hydrogel balloon due to a fast inflation 

( t p � t eq ) or quasi-equilibrium deformation during a slow inflation ( t p � t eq ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pressure less than the instantaneous burst threshold, the hydrogel balloon remains stable for a span of time, slowly grows

and swells, then expands suddenly in size until bursts to fracture. Delayed burst is counterintuitive as it is triggered by a

load below the critical threshold for instantaneous fracture. Such a failure phenomenon is also more detrimental than in-

stantaneous burst, given its latent nature. Even worse, delayed burst may complicate other failure mechanisms of a hydrogel

balloon, such as delayed fracture ( Wang and Hong, 2012a ), structure buckling ( Marthelot et al., 2017 ), and swelling induced

wrinkling ( Bertrand et al., 2016; Curatolo et al., 2017 ), especially in the presence of geometry imperfections ( Lee et al., 2016 )

and material defects ( Kundu and Crosby, 2009; Scherer and Smith, 1995; Wang and Cai, 2015a, b; Wang and Hong, 2012a ).

From the perspective of applications, whether it is on one end of the spectrum where the burst phenomenon is intended

as a design feature to fulfill functions such as drug release and cell delivery, or on the opposite end where delayed burst

is deemed as a failure mode of applications such as soft actuators, soft robots, and in vitro cell cultivation, an accurate

mechanistic understanding of the delayed burst of hydrogel balloons is of vital importance. 

The rest of this paper is organized as follows. In Section 2 , we examine the long-term, hence equilibrium deformation

behavior of a hydrogel balloon under interior pressurization at a constant load. The most intriguing finding is the balloon’s

propensity to imbibe more water molecules into its hydrogel shell, accompanying its expansion in size. Section 3 investigates

the instantaneous response of a hydrogel balloon when subject to a rapidly supplied pressure. The findings in Sections 2 and

3 lead to a theoretical explanation of the delayed burst phenomenon of a hydrogel balloon in Section 4 . In Section 5 , we

extend the study to the burst behavior of a hydrogel shell with a finite thickness. 

2. The long-term response of a hydrogel balloon after fast pressurization 

The inflation process of a hydrogel balloon is depicted in Fig. 1 . In its completely dehydrated state (water concentration

C = 0), a spherical hydrogel shell (or a hydrogel balloon) has a radius of R and a thickness of H , as shown in Fig. 1 (a).

In this section, we first consider a thin spherical balloon, namely H � R . When immersed in water, the hydrogel balloon

swells uniformly to a stress-free state with a water concentration C 0 and an isotropic stretch ratio λ0 , such that the network

equilibrates with the water surrounding in absence of mechanical load. With this stress-free stretch ratio λ0 , the radius

expands to R 0 = λ0 R and the thickness increases to H 0 = λ0 H ( Fig. 1 (b)). In the next step, the balloon is inflated by applying

an internal pressure P , accordingly, the radius further expands to r and the thickness becomes h . Under an evenly distributed

interior pressure, the inflated hydrogel balloon retains the spherical symmetry. Provided that the thickness of the balloon

shell is much smaller than the overall size of the balloon, the variation over the thickness of both hoop stretch λθ and radial

stretch λr are negligible. Thus, λθ can be evaluated approximately at the inner surface; similarly, λr can be estimated as the

average over the entire thickness, namely 

λθ = 

r 

R 

, λr = 

h 

H 

(1)

where λθ and λr represent the hoop and radial stretches with respect to the dry state, respectively. 

The deformation of hydrogels in response to mechanical forces is time-dependent, resulting from the migration of water

molecules. The time needed by the hydrogel balloon to reach an equilibrium via water diffusion, t eq , approximately scales

with H 0 
2 / D . Here H 0 , the free-swelling shell thickness, constitutes the characteristic length; D represents the diffusivity of

water molecules transporting through the hydrogel. Another time scale relevant to the balloon inflation, the time of the

pressurization procedure t p , is defined as the time period as the inner pressure builds up from 0 to P . Depending on the

comparison between t eq and t p , the balloon exhibits disparate mechanical responses to the applied pressure. In the scenarios

where pressurization occurs very fast, i.e., t p � t eq , the local water concentration inside the hydrogel remains at the same
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level C 0 as the free-swelling state during the entire loading process, since the time of pressurization t p is too short for

any water molecule to migrate. Immediately after the completion of a fast pressurization procedure (at t = t p ), the hydrogel

balloon deforms to what we term the instantaneous inflated state, as sketched schematically by the dashed-lines in Fig. 1 (c).

Considering the molecular incompressibility ( Hong et al., 2009, 2008 ), the volume ratio J can be related to the local water

concentration C through 

J = 1 + v C (2) 

where ν is the volume per water molecule. This equation implies that in hydrogel both the polymeric network and the

water molecules are incompressible. As a result, the volume of the hydrogel is a summation of the volume of these two

constituents. Therefore, because of the unchanged water concentration C , the balloon’s instantaneous response to a fast

inflation is featured by a volume-conserving deformation, similar to the deformation of elastomeric materials, whose volume

change is often negligible. Note that here the conserved volume refers to that of the hydrogel shell rather than the volume

enclosed by the balloon; the enclosure volume will nevertheless increase as the balloon expands. 

However, if the pressure is applied during a slow process ( t p � t eq ) that takes place incrementally and in a quasi-

equilibrium manner, the inflation is accompanied with water transportation across the hydrogel network. According to the

molecular incompressibility condition ( Eq. (2) ), with more water content uptake, the volume of the hydrogel shell increases

by the volume of the water entering the polymeric network; and conversely, it decreases due to local water content loss.

Therefore, the water concentration C is subject to vary in these equilibrium deformations ( C � = C 0 ). While the pressure builds

up, the water molecules also take time to migrate, allowing the deformation of the balloon to pass gradually through a series

of quasi-equilibrium states. Moreover, for fast inflation ( t p � t eq ) if the applied pressure is maintained after the completion

of loading, i.e., P = const for t > t p , the hydrogel balloon also evolves towards a final equilibrium state, which is the long-term

response to pressure P . Regardless the loading characteristics, given the same applied pressure, the equilibrium responses

are essentially the same. The boundary of the equilibrium deformation state is defined by the solid shell in Fig. 1 (c). 

In this section, we focus our attention on the long-term/equilibrium deformation of a hydrogel balloon, while leave

the instantaneous response to be studied in the next section. Following previous works ( Hong et al., 20 09, 20 08 ), when

immersed in a solvent reservoir with a constant chemical potential μ, the free energy density of a hydrogel in the reference

state can be expressed by 

W = 

1 

2 

NkT 
(
λ2 

1 + λ2 
2 + λ2 

3 − 3 − 2 log J 
)

− kT 

v 

[ 
( J − 1 ) log 

(
J 

J − 1 

)
+ 

χ

J 

] 
− μ

v ( 
J − 1 ) (3) 

where N is the number of polymer chains per unit volume in the dry state, kT is the absolute temperature in unit of energy,

λi ( i = 1, 2, 3) denotes the principal stretches of the deformed state, J = λ1 λ2 λ3 is the volume ratio and is related to the local

water content through Eq. (2) , and χ is the dimensionless Flory–Huggins parameter representing the enthalpy of mixing. 

The principal component of the nominal stress and Cauchy stress can be calculated by 

S i 
kT / v 

= 

∂ 

∂ λi 

(
W 

kT / v 

)
= N v 

(
λi − λ−1 

i 

)
+ λ−1 

i 

[ 
J log 

(
1 − 1 

J 

)
+ 1 + 

χ

J 
− μ

kT 
J 

] 
(4.1) 

σi 

kT / v 
= 

λi 

J 

S i 
kT / v 

= 

Nv 
J 

(
λ2 

i − 1 

)
+ 

[ 
log 

(
1 − 1 

J 

)
+ 

1 

J 
+ 

χ

J 2 
− μ

kT 

] 
(4.2) 

In particular, relative to the dry polymer network, a freestanding hydrogel immersed in water swells with isotropic

stretches λ1 = λ2 = λ3 = λ0 , where λ0 denotes the isotropic free-swelling stretch. Since the free-swelling state is associated

with a stress-free deformation, λ0 can be determined by equating the Cauchy stress in the hydrogel to zero. Given the value

of Nv , the free-swelling ratio λ0 can be expressed as follows: 

Nv 
(
λ−1 

0 − λ−3 
0 

)
+ log 

(
1 − λ−3 

0 

)
+ λ−3 

0 + χλ−6 
0 − μ/kT = 0 (5) 

The dimensionless group Nv is identified as the shear modulus of the dry state polymer under infinitesimal strain. 

When subjected to an evenly distributed interior pressure, a hydrogel balloon undergoes spherically symmetric deforma-

tion. Taking advantage of symmetry, we have hoop stretches λ1 = λ2 = λθ , radial stretch λ3 = λr , and volume ratio J = λθ
2 λr. 

Plugging these relations into Eq. (4.1) , the nominal hoop and radial stresses are 

S θ
kT / v 

= N v 
(
λθ − λ−1 

θ

)
+ λ−1 

θ

[ 
J log 

(
1 − 1 

J 

)
+ 1 + 

χ

J 
− μ

kT 
J 

] 
(6.1) 

S r 

kT / v 
= N v 

(
J λ−2 

θ
− J −1 λ2 

θ

)
+ J −1 λ2 

θ

[ 
J log 

(
1 − 1 

J 

)
+ 1 + 

χ

J 
− μ

kT 
J 

] 
(6.2) 

And the Cauchy stresses in the hoop and radial directions can be calculated by using Eq. (4.2) as 

σθ

kT / v 
= J −1 N v 

(
λ2 

θ − 1 

)
+ 

[ 
log 

(
1 − 1 

J 

)
+ 

1 

J 
+ 

χ

J 2 
− μ

kT 

] 
(7.1) 

σr 

kT / v 
= J −1 N v 

(
λ−4 

θ
J 2 − 1 

)
+ 

[ 
log 

(
1 − 1 

J 

)
+ 

1 

J 
+ 

χ

J 2 
− μ

kT 

] 
(7.2) 
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In the deformed configuration, the force balance in the radial direction gives 

d σr 

dρ
+ 2 

σr − σθ

ρ
= 0 ( r ≤ ρ ≤ r + h ) (8)

where ρ is the radius of a differential spherical layer in the deformed configuration. Consider that for a thin-walled hydrogel

balloon with H � R , when inflated, the tensile stress in the hoop direction σ θ is orders of magnitude greater than the

compressive stress in the thickness direction σ r . Therefore, the triaxial stress state in the balloon shell can be approximated

by an equal-biaxial state, namely, 

σ = 

[ 

σθ

σθ

σr 

] 

≈
[ 

σθ

σθ

0 

] 

(9)

Moreover, in a thin-walled hydrogel balloon, σ θ barely varies over the thickness of the balloon shell. Although σ r varies

from –P to 0 through the thickness, its magnitude is trivial compared to the hoop stress σ θ . As a result, the value of

( σθ −σ r )/ ρ in Eq. (8) can be treated as a constant over the entire thickness of the balloon shell. In the deformed coordinate,

integrating Eq. (8) from the pressurized inner surface to the stress-free outer surface of the balloon ∫ 0 

−P 

d σr = 2 

∫ r+ h 

r 

σθ − σr 

ρ
dρ (10)

yields 

σθ − σr = 

P r 

2 h 

(11)

Substituting Eqs. (7.1) and (7.2) and the relations that λθ = r / R and λr = h / H into Eq. (11) we can express the inflation

pressure P as a function of J and λθ

P 

kT / v 
= 

2 H 

R 

Nv ·
(
λ−1 

θ
− λ−7 

θ
J 2 
)

(12)

By adopting an approximation of the equal-biaxial stress state, σ r vanishes, so that Eq. (6.2) gives 

J −1 N v 
(
λ−4 

θ
J 2 − 1 

)
+ 

[ 
log 

(
1 − 1 

J 

)
+ 

1 

J 
+ 

χ

J 2 
− μ

kT 

] 
= 0 (13)

Combining Eqs. (12) and (13) , we establish the mechanical behavior of the hydrogel balloon as a relation between the

pressure P and the equilibrium deformation state of the balloon ( J and λθ ). Given the thin-walled geometry of the balloon,

we can further ignore the variation of J, λθ , and λr over the thickness. Therefore, the deformation is homogeneous through-

out the balloon shell and can be completely set by two parameters J and λθ (here J, λr, and λθ are not independent since

J = λr λθ
2 ). λθ = r / R indicates the size of the balloon: a larger λθ corresponds to a further inflated state, i.e., a larger bal-

loon; while J suggests the steady-state water concentration inside the balloon shell, a higher value of J implies more water

content is absorbed into the hydrogel network in the current equilibrium frame. When material properties and geometry

parameters ( Nv, χ , μ, and H / R ) are specified, the equilibrium deformation state of the hydrogel balloon can be identified

for any given inner pressure P by solving Eqs. (12) and (13) . Representative values of the dimensionless crosslinking density

of a hydrogel Nv may vary over 1 × 10 −4 ∼1 × 10 −1 , and the Flory–Rehner interaction parameter χ typically ranges 0 ∼1.2

( Hong et al., 2009 ). In the numerical examples below, we will take values, χ = 0.2, H / R = 0.01, and the chemical potential of

the water reservoir μ= 0, unless otherwise mentioned. 

For different values of Nv (0.0 01, 0.0 03, 0.0 05, and 0.0 07), Fig. 2 (a) plots the correlation among normalized pressure

Pv / kT , volume strain J, and hoop stretch λθ as a family of three-dimensional curves, such that the equilibrium response of a

hydrogel to applied pressure is readily spotted. Projecting these curves onto J- λθ plane, as shown in Fig. 2 (b), J is plotted as

a function of λθ . Starting from the free-swelling state (marked by the squares, for example), along the inflation process the

expansion of the gel balloon is accompanied with a monotonic increase of J , indicating a spontaneous migration of water

into the balloon shell as the balloon expands in size. This fact can be ascribed to the equal-biaxial tensile stress state in the

hydrogel balloon ( Fujine et al., 2015 ). 

Fig. 2 (c) shows the relation between the dimensionless internal pressure Pv / kT and the normalized balloon size r / R . For

example, when Nv = 0.001 the inflation procedure starts at its free-swelling state λ0 = 3.21. The pressure Pv / kT required by

an equilibrium state of the hydrogel balloon continues to increase until a maximum magnitude of 3.04 × 10 −6 is reached as

the balloon expands to r / R = 5.00. Thereafter, the pressure drops for further inflation, indicating the existence of a critical

pressure P cr (dashed line) above which no equilibrium deformed states can be obtained. Any quasi-equilibrium inflation

process with a pressure above P cr would lead to a continual and infinite growth in the balloon size, resulting in burst of the

hydrogel balloon. 

Moreover, the swelling also becomes infinite if the critical pressure is exceeded because of the simultaneous increasing

of the swelling ratio and hoop stretch. It is concluded from Fig. 2 (d) that when a pressure P less than P cr is applied , the

hydrogel swells and the volume ratio J evolves to a corresponding equilibrium state which can be recognized on the lower

half of the curve in Fig. 2 (d), as illustrated by the arrow. For P < P cr , the higher the applied pressure, the more the hydrogel
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Fig. 2. Long-term equilibrium deformation of a hydrogel balloon. (a) Three-dimensional curves representing the relation between applied pressure Pv / kT 

and the equilibrium deformations for hydrogel balloons with different Nv values ( Nv = 0.0 01, 0.0 03, 0.0 05, and 0.0 07). (b) J as a function of λθ ; J and λθ are 

volume strain and hoop stretch with respect to the dehydrated state. Curves start from the free-swelling states (labeled by the squares) for each hydrogel 

balloon. (c) Normalized pressure Pv / kT as a function of λθ . (d) Volume ratio J as a function of applied pressure Pv / kT . In (c) and (d), the maximum pressure 

permitting the existence of equilibrium deformation and bounded swelling is marked by the dashed lines. The black arrow indicates an equilibrium final 

deformation when P < P swell 
cr . 

 

 

 

 

 

 

 

 

 

 

 

 

swells in its final equilibrium state. In contrast, beyond P cr, the water absorption becomes unbounded due to the lack of

equilibrium state. Water molecules will continuously migrate into the hydrogel. Therefore, the critical pressure P cr for equi-

librium deformation can be physically interpreted as a threshold for unbounded swelling P swell 
cr . Such an unbounded swelling

will invoke anomalous inflation behavior of the hydrogel balloon, as to be discussed in the following sections. 

3. The instantaneous response of a hydrogel balloon to fast inflation 

As aforementioned, the pressurization time scale governs the mechanical responses of a hydrogel balloon. When an

internal pressure is applied suddenly ( t p � t eq ), the instantaneous response of the balloon is characterized by a volume-

conserving deformation, similar to that of elastomeric materials. In an effort to determine the instantaneous inflation behav-

ior subject to fast inflation, we first consider a homogeneously swollen hydrogel balloon with an arbitrary water concentra-

tion 

ˆ C inside the balloon shell. Let us denote this swollen state of the gel balloon as state S( ̂  C ), referring to its homogeneous

water distribution. In state S( ̂  C ), the corresponding isotropic swelling ratio can be calculated by 

ˆ λ = 

(
1 + v ̂  C 

) 1 
3 (14) 

Next, we think of a scenario where the boundaries of the balloon become impermeable so that solvent exchange be-

tween hydrogel balloon and the reservoir is prohibited. We take the hydrogel shell containing polymer chains and water

content as the control volume. Under such an impermeable boundary condition, the balloon shell is therefore turned into

a closed system with a constant water concentration remaining at ˆ C . Any subsequent deformation of the hydrogel is thus

incompressible and the volume ratio ˆ J remains fixed. The incompressibility constraint can be written as 

J = 

ˆ J = 1 + v ̂  C = 

ˆ λ3 = const (15) 
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Given the fixed volume ratio, the Helmholtz free energy density defined in Eq. (3) becomes W ( λ1 , λ2 ,

λ3 ) = 1/2 NkT ( λ1 
2 + λ2 

2 + λ3 
2 − 3) + const for instantaneous inflation responses. Note that λ1 , λ2 , and λ3 are defined on the

dry state of the hydrogel balloon. To impose the incompressibility condition, let 	 denote a Lagrange multiplier and add a

term 	( J − ˆ J ) to the free energy density 

L ( W, 	) = W ( λ1 , λ2 , λ3 ) + 	
(
J − ˆ J 

)
(16)

The nominal stress in principal directions are 

S 1 = 

∂L ( W, 	) 

∂ λ1 

= 

∂W ( λ1 , λ2 , λ3 ) 

∂ λ1 

+ 	λ2 λ3 (17.1)

S 2 = 

∂L ( W, 	) 

∂ λ2 

= 

∂W ( λ1 , λ2 , λ3 ) 

∂ λ2 

+ 	λ1 λ3 (17.2)

S 3 = 

∂L ( W, 	) 

∂ λ3 

= 

∂W ( λ1 , λ2 , λ3 ) 

∂ λ3 

+ 	λ1 λ2 (17.3)

and the principal Cauchy stresses are 

σ1 = 

S 1 
λ2 λ3 

= 

λ1 

ˆ J 

∂W ( λ1 , λ2 , λ3 ) 

∂ λ1 

+ 	 (18.1)

σ2 = 

S 2 
λ1 λ3 

= 

λ2 

ˆ J 

∂W ( λ1 , λ2 , λ3 ) 

∂ λ2 

+ 	 (18.2)

σ3 = 

S 3 
λ1 λ2 

= 

λ3 

ˆ J 

∂W ( λ1 , λ2 , λ3 ) 

∂ λ3 

+ 	 (18.3)

For the spherical gel balloon undergoes a spherically symmetric deformation, we have σ 1 = σ 2 = σθ , and σ 3 = σ r ,

therefore, 

σθ − σr = σ1 − σ3 = 

1 

ˆ J 

(
λ1 

∂W 

∂ λ1 

− λ3 
∂W 

∂ λ3 

)
(19)

Insert Eq. (19) into the equation of force balance ( Eq. (8) ) and integrate from the pressurized inner surface to the stress-

free outer surface, we arrive at an expression of the pressure in terms of the deformation of the balloon, i.e., the instanta-

neous mechanical response to fast inflation 

P vc 

kT / v 
= 2 

H 

∗

R 

∗
Nv 
ˆ λ

[ (
λ∗

θ

)−1 −
(
λ∗

θ

)−7 
] 

(20)

where H 

∗ = ̂

 λH and R ∗ = ̂

 λR are the thickness and radius of the hydrogel balloon in the initial isotropic swollen state S( ̂  C ) be-

fore inflation, λ∗
θ

= λθ / ̂ λ is defined as the hoop stretch with regard to the reference state S( ̂  C ), P vc denotes the applied pres-

sure, and the superscript VC serves as a reminder of the volume-conserving deformation. Note that the pressure-deformation

relation depicted by the equation above recovers the well-studied inflation behavior of a balloon made of incompressible

Neo-Hookean rubber. By examining the form of Eq. (20) , one easily finds that if water migration is not allowed, mechani-

cally the hydrogel behaves as a diluted polymeric material. The equivalent initial shear modulus of such a diluted polymeric

network is Nv / ̂ λ (dimensionless). Compared to that of the dry state, the swollen network is softened by a factor of 1 / ̂ λ.

Additionally, at λ∗
θ

= 1 . 383 , the pressure reaches a maximum value of 

P vc 
cr 

kT / v 
= 1 . 24 

H 

∗

R 

∗
Nv 
ˆ λ

(21)

This maximum pressure as well constitutes a critical value that the balloon can sustain in a volume-conserving inflation.

For P < P vc 
cr , the inflation is steady and the applied pressure carries the balloon to a deformed state that is determined by

Eq. (20) . Whereas if P ≥ P vc 
cr , the balloon grows unstably, leading to a rupture. Since such a failure is not associated with

water migration, when the applied load satisfies the failure criterion, it occurs in an instantaneous fashion. Furthermore,

Eq. (21) reveals that this critical pressure P vc 
cr is dependent on the isotropic swelling ratio ˆ λ and thus the water concen-

tration 

ˆ C : at a specific concentration, there exists a corresponding critical pressure P vc 
cr ( ̂  C ) beyond which burst occurs. This

conclusion becomes very useful when interpreted equivalently as follows: the criterion to predict whether an instant burst

happens or not is whether the applied pressure exceeds P vc 
cr ( ̂  C ) , which is defined by the water concentration 

ˆ C at the cur-

rent time instance. Particularly, when an inner pressure is suddenly applied to an initially free-swelling hydrogel balloon,

the mechanical response of the hydrogel balloon starts with an instantaneous and volume-conserving deformed state. If the

load is supercritical, namely, P ≥ P vc 
cr ( C 0 ) , the balloon fails instantaneously by burst. We refer to such a failure mechanism

as the instant burst of a hydrogel balloon because it takes place immediately upon the pressurization. The instant burst

threshold P ins 
cr of a free-swelling hydrogel balloon is identical to P vc 

cr ( C 0 ) . 
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Fig. 3. Mechanism of the delayed burst of a hydrogel balloon. (a) Evolution of the intermediate states during inflation when a subcritical pressure of 

Pv / kT = 2.90 × 10 −6 is applied to the balloon. Compared to case (b) when the balloon is subject to a supercritical pressure of Pv / kT = 3.34 × 10 −6 , delayed 

burst occurs as a consequence of the unbounded swelling. 2 © 3 © 4 © in (a) represents progressively deformed states in response to the applied pressure as 

the hydrogel shell continues to swell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Lastly, for hydrogel balloons with different water concentrations, the critical pressure for instant burst is a decreasing

function of the homogeneous swelling ratio. According to Eq. (21) , the critical pressure is inversely proportional to ˆ λ, hence

the gel balloon becomes more susceptible to volume-conserving burst if it has more water taken up by the polymeric

network. Compare two geometrically identical gel balloons A and B, if C A > C B , P 
vc 
cr ( C A ) < P vc 

cr ( C B ) . 

4. Delayed burst of a hydrogel balloon 

It is well known that the time-dependent mechanical behavior is one of the most fundamental characteristics of hydrogel

materials. The time-dependency may either arise due to the intrinsic viscoelasticity of the constituent cross-linked polymer

chains or stem from the poroelasticity that takes accounts for the molecular interaction between the polymer network and

the surrounding solvent molecules ( Hu and Suo, 2012; Wang and Hong, 2012b ). In the present study, we assume the polymer

network is ideally elastic and ascribe the time-dependency to the water transportation process through the hydrogel. As

aforementioned, mechanical response of a hydrogel subjected to suddenly applied mechanical loads is characterized by an

incompressible deformation, followed by a long-term time-dependent deformation towards equilibrium state due to water 

transportation. In this section, we will systematically study the evolution process of the hydrogel balloon deformation from

the instant response state towards the long-term equilibrium state. 

When a free-swelling gel balloon is subject to a fast pressurization, even though the water diffusion between the hy-

drogel and water reservoir is allowed, the immediate response is dominated by the incompressible inflation: if P ≥ P ins 
cr =

P vc 
cr ( C 0 ) , instant burst occurs, whereas if P < P ins 

cr = P vc 
cr ( C 0 ) , the instantaneous deformation is given by Eq. (20) with 

ˆ J = J 0 
and 

ˆ λ = λ0 , namely 

P 

kT / v 
= 2 

H 

R 

Nv 
λ0 

[ (
λ

′ 
θ

)−1 −
(
λ

′ 
θ

)−7 
] 

(22) 

where λ0 is the free-swelling stretch ratio sketched in Fig. 1 (b) and thus λ′ 
θ

= λθ / λ0 denotes the hoop stretch relative to

the free-swelling state. 

However, because of the migration of water molecules, the gel balloon does not stay in this instantaneous deformed state

but keeps evolving to equilibrate with the solvent and mechanical loads. Driven by the biaxial stretch state in the hoop di-

rections, the surrounding water molecules in the solvent reservoir start to migrate into the balloon shell. The stiffness of the

hydrogel is effectively reduced as the hydrogel balloon swells, which in turn leads to a further expansion under a constant

interior pressure. According to Section 2 , depending on the applied pressure, subsequent to the instant deformation, the

balloon will either arrive at an equilibrium final state through a gradual procedure of simultaneous swelling and expan-

sion, or, in another case, experience an unbounded water intake. For example, if pressure Pv / kT = 2.90 × 10 −6 is suddenly

pumped into the balloon ( Nv = 0.001, H / R = 0.01), since the load is less than the critical pressure for unbounded swelling

P swell 
cr ν/kT = 3 . 04 × 10 −6 (see Fig. 2 (c) and (d)), eventually the hydrogel balloon will arrive at an equilibrium final state with

λeq = 4.39 and J eq = 51.06, which is determined by solving Eqs. (12) and (13) . However, if the hydrogel is subjected to a su-

percritical pressure Pv / kT = 3.34 × 10 −6 , the balloon will expand and imbibes water continuously in an unbounded fashion. 

The subsequent time-dependent evolution procedure in response to a fast pressurization is explained by Fig. 3 . The

green curve in Fig. 3 (a) plots the incompressible response of the balloon at water content C corresponding to the free-
0 
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swelling state λ0 = R 0 / R = 3.21. When a subcritical pressure of Pv / kT = 2.90 × 10 −6 is applied, following the green curve, the

balloon expands immediately from the initial free-swelling state (denoted by point 1 in Fig. 3 (a)) λ0 = 3.21 at J 0 = λ0 
3 = 33.23

to the instantaneous deformed state λθ = r / R = 3.64 at the same volume ratio J = J 0 (point 2). During the expansion, the

radius grows to 1.13 times of its initial size. Soon afterwards, a small amount of water diffuses into the gel balloon shell,

causing the water content to increase to C 0 + 
C and the volume ratio to J 0 + 
J . In response to the water migration, the

hydrogel balloon expands further and evolves to a new deformed state, which can be determined by Eq. (20) at the water

concentration of C 0 + 
C . For instance, when water continues to migrate into the gel so that J = 40, the deformation of the

balloon can be found at the intersection (denoted by point 3) of the volume-conserving response curve with J = 40 and

the horizontal line Pv / kT = 2.90 × 10 −6 . Via a sequence of these intervening states, the hydrogel balloon evolves towards its

equilibrium final state. Under a constant applied pressure, the state of the hydrogel balloon progresses consecutively across

a family of incompressible P - λθ curves with ascending J , from the starting volume ratio J = J 0 and terminates at the final

equilibrium volume ratio J eq = 51.06 (point 4). 

To illustrate that the volume-varying evolution of the gel balloon indeed passes through these intermediate states deter-

mined by the family of volume-conversing curves, let us consider an unloading process: at the moment J = 40, the bound-

aries of the gel balloon abruptly loses its permeability, then we drop the pressure. Fully unloaded, the balloon rests at a

uniformly swollen state λθ = λr = 40 1/3 marked by point 5. Lastly, we bring the pressure back to the previous value, the

reloading process follows the double arrow from point 5 to point 3 on the incompressible response curve. Therefore, point

5 and 3 is connected by a constant-volume process with J = 40, in other words, the intermediate state denoted by point 3

can be identified as the intersection of the incompressible response curve and the applied pressure. 

In contrast, if the applied inner pressure is above the critical threshold P swell 
cr ν/kT = 3 . 04 × 10 −6 , the gel balloon will

expand unstably, rather than come to a standstill at a final equilibrium state. Whereas the balloon expands and the hy-

drogel shell imbibes more water content, the critical pressure for instant burst monotonically decreases as a result of the

reduced shear modulus of the diluted polymeric network ( Eq. (21) ); and the critical pressure for instant burst eventually

falls below the applied pressure. As Fig. 3 (b) shows, under an applied pressure of 3.34 × 10 −6 , starting from the initial vol-

ume ratio J = J 0 = 33.23, the hydrogel continuously swells to J = 51.06 over time, and the corresponding critical pressure for

burst decreases from P ins 
cr ν/kT = P vc 

cr ( J = J 0 ) ν/kT = 3 . 86 × 10 −6 to the value of the applied pressure, i.e., 3.34 × 10 −6 . As a

result, the applied pressure of 3.34 × 10 −6 triggers the instant burst of the hydrogel balloon when the volume ratio has in-

creased to J = 51.06 by water absorption. Compared to the instant failure which occurs immediately upon the pressurization

of a free-swelling hydrogel balloon, such burst phenomenon does not take place until a span of time has elapsed after the

Pv / kT = 3.34 × 10 −6 is applied. The delayed time period is attributed to the time-dependent swelling procedure during which

the volume ratio J continuously increases from 33.23 to 51.06 and the critical pressure for instant burst P vc 
cr (C) reduces to

the level of the applied pressure P vc 
cr (C) = P . The delayed burst of a hydrogel balloon is so named because the onset of it

is postponed. Nevertheless, the occurrence of burst itself is instantaneous, as long as the water concentration in the hydro-

gel shell registers a critical level C such that P vc 
cr (C) = P . As analyzed above, unbounded swelling and the decreasing critical

pressure P vc 
cr (C) conspire to cause the delayed burst phenomenon. By analogy with the notion of damage mechanics, at a

constant pressure load, the capability of the balloon to resist burst failure decays over time as the hydrogel swells, indicating

some form of “degradation” is accumulated by virtue of unlimited water migration. 

As the delayed burst is a direct consequence of the unbounded swelling, the critical pressure for unbounded swelling

P swell 
cr ν/kT = 3 . 04 × 10 −6 also defines a critical threshold for delayed burst: when a normalized applied pressure P < P swell 

cr ,

the hydrogel balloon will takes in water and eventually equilibrates with the pressure load and the solvent environment, no

burst occurs; whereas if a normalized applied pressure P swell 
cr ≤ P < P ins 

cr is applied, delayed burst will occur. 

The intrinsic time scale of the delayed burst can be estimated by the solvent diffusion dynamics, t ∼H 0 
2 / D . At room

temperature, diffusivity D can be approximated by the self-diffusivity of water molecules, D ≈ 1 × 10 −9 m 

2 s −1 ( Hong et al.,

2008; Wang and Hong, 2012a ). For a hydrogel balloon with an initial thickness H 0 = 1 mm, the time required by the water

molecule to migrate into the balloon shell is on the order of 10 0 0 s, which dictates the characteristic time for the delayed

burst. Here, we analyze the delayed burst of a hydrogel balloon by investigating the evolution of the intermediate states

from the instant mechanical response of the balloon towards its long-term equilibrium state. A full account of the time-

dependent process resorting to directly solving solvent transportation kinetics is beyond the scope of the present paper. 

The distinction between equilibrium inflation and delayed burst is also reflected on the free energy landscape. The total

free energy of the system is composed of the strain energy of the hydrogel balloon and the potential energy due to the

applied pressure. Therefore, the free energy is a function of the applied pressure and the deformation of the balloon 

F ( J, λθ | P ) (
kT 
v 

)
· 4 πR 

3 
= 

H 

2 R 

N v 
(
2 λ2 

θ + J 2 λ−4 
θ

− 3 − 2 log J 
)

− H 

R 

{ [ 
( J − 1 ) log 

(
J 

J − 1 

)
+ 

χ

J 

] 
+ ( J − 1 ) 

} 

− 1 

3 

P 
kT 
v 

λ3 
θ (23)

Fig. 4 plots the system free energy in J - λθ space at (a) a subcritical pressure for delayed burst Pv / kT = 2.90 × 10 −6 and

(b) a supercritical pressure 3.34 × 10 −6 , respectively. When Pv / kT = 2.90 × 10 −6 ( P < P swell 
cr ), as shown in Fig. 4 (a), on the

free energy surface there exists a local minimum representing the final equilibrium deformation. In the energy contour

plot ( Fig. 4 (a) right panel), the starting point of the white curve denotes the instantaneous deformation state (point 2 in

Fig. 3 (a)), while the terminal point represents the final equilibrium deformation state (point 4 in Fig. 3 (a)). In between,

the path connecting the instantaneous response and the final deformation represents the intervening states of the hydrogel

balloon. Starting from the instantaneous inflated state, the hydrogel balloon keeps absorbing water with volume ratio J
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Fig. 4. Free energy surface and contour at an applied pressure (a) Pv / kT = 2.90 × 10 −6 and (b) Pv / kT = 3.34 × 10 −6 . The solid white trajectory tracks the 

minimum energy state of the system as the balloon swells. The white dashed line indicates the delayed burst. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

increasing. Since only the water migration requires time whereas the radial expansion of the balloon occurs promptly, at

any increased value of J , the corresponding hoop stretch λθ = r / R should vary to minimize the free energy. The intervening

states are thus identified by minimizing the free energy at a given J . Consequently, in the J - λθ space, the inflated hydrogel

balloon leaves a white path tracing the evolution of its intermediate states. Driven by the minimization of the total free

energy of the system, = 90 × the balloon continues to swell and expand along the white path until the energy comes to a

minimum, and the deformation stops at the final equilibrium state marked by the end of the white arrow. 

As shown in Fig. 4 (b), the free energy landscape at a supercritical pressure of Pv / kT = 3.34 × 10 −6 ( P > P swell 
cr ) exhibits

a lack of local minimum. The first stage of the energy minimization starts from the instantaneous response state at

J = J 0 = 33.23 (corresponding to the green dot in Fig. 3 (b)) to the onset of the delayed burst (end of the white solid line,

J = 51.06, corresponding to the cyan dot in Fig. 3 (b)), during this process the hydrogel balloon slowly absorbs water and

grows in size over time. At the turning point where J = 51.06, the energy minimum no longer presents, there are actually

multiple paths to further minimize the energy. However, the dashed line represents the only way which is not associated

with water migration, in other words, it constitutes the fastest path to perform energy minimization that requires no time.

Therefore, at J = 51.06 the system seeks to minimize the energy by a pure size expansion (burst), as the dashed line indicates.

Furthermore, we can prove that, for an initially free-swelling hydrogel balloon shown in Fig. 1 (b), the critical pressure

for instant burst P ins 
cr is always greater than that for delayed burst P swell 

cr , i.e., P ins 
cr > P swell 

cr (see Appendix A ). For instance, in

the previous numerical example, P ins 
cr ν/kT = 3 . 86 × 10 −6 is greater than P swell 

cr ν/kT = 3 . 04 × 10 −6 , as shown in Fig. 3 (a) and

(b). Hence, any applied pressure P may fall into one of three intervals, which are associated with three distinct responses.

If P ≥ P ins 
cr , the gel balloon bursts immediately upon the load; when P < P swell 

cr , the balloon first deforms to an instantaneous
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Fig. 5. Failure mode map of the inflation of a hydrogel balloon delineating three regions in the parameter space of P - Nv : instant burst, delayed burst, and 

equilibrium inflation. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

state then swells and expands further to attain an equilibrium state; if P swell 
cr ≤ P < P ins 

cr , delayed burst occurs, namely the

hydrogel balloon expands gradually for a span of time and then bursts suddenly. Fig. 5 delineates a map for these three

situations in the parameter space of P - Nv . These two pressure limits P ins 
cr and P swell 

cr define the boundary of a new region

corresponding to delayed burst failure mode. Owing to its latent nature, such delayed failure mode is more detrimental to

the application of thin-walled hydrogel structures. 

Recall that the material property Nv represents the crosslinking density and the initial stiffness of the polymer network.

Both critical pressures for instant burst P ins 
cr ν/kT and for delayed burst P swell 

cr ν/kT scale up with stiffness Nv . Moreover, as

Nv increases, the pressure window associated with the delayed burst becomes larger, because of the increasing difference

between P ins 
cr and P swell 

cr . 

5. Delayed burst of a thick hydrogel balloon 

In other cases ( Dervaux et al., 2011; Hu et al., 2010; Kundu and Crosby, 2009; Mytnyk et al., 2017b; Pan et al., 2016 ),

the thickness of the hollow hydrogel structure may not be essentially small compared to other dimensions, for example, the

inner radius of the hollow space. Especially, if the thickness is much larger than the inner radius, the hollow space becomes

a cavity defect in a hydrogel. Under pressurization, these structures and defects may be as well susceptible to instant burst

and delayed burst. In this section, we investigate the effect of the balloon thickness on the critical pressure for delayed

burst. 

When the balloon has a finite thickness, the variation of the quantities in the radial direction needs to be accounted

for. The stretches λθ and λr , water concentration C , volume ratio J , radial stress σ r , and hoop stress σ θ all vary along the

thickness direction. For a special case where the material is incompressible, this boundary value problem represented by

Eq. (10) can be integrated analytically, 

P vc 

kT / v 
= Nv 

{ (
B 

3 

B 

3 − A 

3 + a 3 

) 1 
3 

·
[

5 B 

3 − 4 A 

3 + 4 a 3 

2 B 

3 − 2 A 

3 + 2 a 3 

]
− 1 

2 

(
A 

a 

)4 

− 2 

A 

a 

} 

(24)

where A and B are the inner and outer radii of the hydrogel balloon in the free swelling state (as labeled in Fig. 6 (a)),

respectively, and a is the inner radius in the deformed state. Before deformation, the thickness of the balloon is H = B − A .

As previously discussed, if the time scale of interest is much smaller than the characteristic time of the water diffusion, the

hydrogel behaves as an incompressible hyperelastic material. Thus, Eq. (24) explicitly gives the response of a thick hydrogel

balloon under fast inflation. 

Whereas for hyperelastic materials exhibiting compressible behavior, as the quasi-equilibrium deformation during slow

pressurization of a hydrogel balloon, the volume-conserving assumption is invalid. Analytical solutions of Eq. (10) are re-

stricted to materials whose constitutive laws take special forms ( Ball, 1982; Chung et al., 1986; Horgan, 1992; Podio-Guidugli

et al., 1986; Sivaloganathan, 1986 ) or limited to asymptotic approximations ( Dai and Song, 2011 ). In general, solving the

boundary value problem described by Eq. (10) necessitates numerical approaches such as finite difference scheme (for exam-

ple, shooting method) or alternatively finite element method (FEM) ( Lopez-Pamies et al., 2011; Nakamura and Lopez-Pamies,

2012 ). Here, we examine the slow pressurization procedure by using commercial FEM package ABAQUS. Because the govern-

ing equation of the problem Eq. (10) possesses spherical symmetry, it is adequate to merely consider a differential volume

that is cut out from the hollow sphere by planes ϴ= θ , ϴ= θ + δθ , Ф = ϕ, Ф = ϕ + δϕ, ρ = A , and ρ = B , as Fig. 6 (a) shows.

Note that ABAQUS does not directly supply one-dimensional spherically symmetric element. However, this boundary value

problem can be alternatively modeled by using two-dimensional axisymmetric quadrilateral elements under special treat-
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Fig. 6. (a) Geometry of a balloon with finite thickness H = B − A. A and B are undeformed inner and outer radii, respectively. Schematic of the (b) two- 

dimensional equivalent FEM representative of the (c) actual one-dimensional model. (d) Normalized pressure Pv / kT as a function of normalized inner 

surface deformation a / A for instant (volume-conserving) and slow (equilibrium) inflation of a thick balloon. (Hydrogel property Nv = 0.001, and balloon 

geometry A / H = 4.5/1). 

Fig. 7. Percentage difference between the critical pressures for instant inflation and unbounded swelling (P ins 
cr − P swell 

cr ) /P ins 
cr × 100% , for hydrogel balloons 

with various thicknesses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ments that ensure spherically symmetric behavior. Since the integration in one of the hoop directions Ф is already taken care

of by the formation of axisymmetric elements, once we apply suitable boundary conditions to ensure the symmetry in an-

other hoop direction ϴ, the spherical symmetry is guaranteed. Therefore, by suppressing the hoop direction freedom, nodes

are only free to displace in the radial direction. Furthermore, the radial displacement of nodes on the top side is constrained

to be the same as the corresponding nodes on the bottom side, namely u (i ) 
top = u (i ) 

bottom 

, where ( i ) labels the node number.

Now the ϴ direction is discretized by taking advantage of symmetry. Under such a treatment, the two-dimensional model

in Fig. 6 (b) becomes equivalent to one-dimensional spherically symmetric. In the following analysis, we use δθ = 0.5–1 °.
Mesh convergence analysis is also performed in order to ensure the accuracy of the calculation when A is comparatively

miniature to H . In the next step, equilibrium pressure P is recorded as a function of the prescribed displacement of the

inner surface a . 

Fig. 6 (d) compares the final equilibrium deformation to the instant (volume-conserving) response of a thick hydrogel

balloon with ratio A / H = 4.5/1. The equilibrium inflation response is obtained from FEM, and the instant inflation response

is plotted from Eq. (24) . Similarly to a thin balloon, the inflation of a thick balloon is also divided into three regions. An

applied pressure greater than the peak value of the fast inflation ( P ins 
cr ) causes instant burst, while a pressure smaller than

the maximum pressure on slow inflation curve ( P swell 
cr ) results in an equilibrium deformation. The peak pressure for fast

inflation is higher than that of the slow inflation, carving out a pressure interval for delayed burst to occur. 

The predominance of the delayed burst phenomenon can be represented by the difference between the two pressure

limits P ins 
cr and P swell 

cr . Fig. 7 shows the percentage difference (P ins 
cr − P swell 

cr ) /P ins 
cr × 100% for hydrogel balloons with a series of

thicknesses from A / H = 100 to A / H = 0.01. As the thickness increases, the pressure difference is reduced from a highest value

of 22% to a minimum value of 2%. The delayed burst phenomenon is more difficult to observe when the wall thickness
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Fig. 8. Distribution of (a) stress component ratio | σ r / σ θ | and (b) relative volume ratio J / J 0 at critical pressure P swell 
cr on equilibrium inflation curve for 

hydrogel balloons with various thicknesses. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

increases. As A / H approaches 0, the critical pressures for instant burst and unbounded swelling tend to merge, and the

delayed burst region diminishes on the failure map, indicating that the delayed cavitation becomes less pronounced for

an infinitesimal cavity inside the hydrogel body. Ultimately, it might be expected that the importance of delayed burst

diminishes as the dimension of inner surface diminishes, and while this is the case, instantaneous failure may become the

only prevailing mode of cavitation in hydrogels. The corresponding critical pressure is 2.5 Nv , below which the long-term

equilibrium state exists, as predicted by taking the limit of Eq. (24) with B � A and a � A . 

In contrast to thin balloons, under inner pressurization, the stress state in a thick balloon deviates from an equal biaxial

state. Fig. 8 (a) plots the ratio between the radial stress and the hoop stress | σ r / σθ | at critical pressure P swell 
cr . As the thick-

ness increases, the radial stress is not negligible anymore when compared with the hoop stress. For a small pressurized

cavity inside the hydrogel, between the inner surface and the outer surface, the compressive stress in the radial direction

may exceed the tensile stress in the hoop direction. The dissimilarity in the stress states results in distinct distributions

of water content and relative volume ratio J / J 0 . As Fig. 8 (b) shows, the water absorption declines as the balloon becomes

thicker. In the neighborhood of the inner surface of a small pressurized cavity, the hydrogel even loses water content to

the environment. The loss of solvent effectively stiffens the hydrogel, elevates the critical pressure for slow inflation, and

consequently, narrows the pressure range for delayed burst or cavitation in a thick hydrogel balloon. 

6. Conclusion 

From the aspect of water migration, this paper investigates the delayed burst phenomenon as a new failure mechanism

during the inflation of a hydrogel balloon. In contrast to instantaneous burst, the mechanism of the delayed burst is at-

tributed to an unbounded swelling process subsequent to the instant deformation upon the load. As the hydrogel swells,

the instantaneous burst critical pressure of the inflated balloon reduces gradually to the applied inner pressure, triggering

the burst. This new failure mode is termed as the delayed burst to signify the fact that the onset of the burst is delayed by

a time period for water molecules to migrate into the hydrogel balloon shell. The process of delayed burst is understood by

tracking the evolving mechanical response of swelled hydrogel balloon and as well by minimizing the free energy profile of

hydrogel balloon subjected to subcritical pressures. 

Moreover, we identify the critical pressure for instantaneous burst and delayed burst, along with the three inflation

modes of an initially free-swelling hydrogel balloon: If P ≥ P ins 
cr , the gel balloon bursts immediately in response to the applied

inner pressure; when P swell 
cr ≤ P < P ins 

cr , delayed burst occurs, namely, the hydrogel balloon expands gradually for a span of

time and then burst suddenly; if P < P swell 
cr , the balloon first deforms to an instantaneous state upon the load, followed

by attaining an equilibrium state via bounded swelling and expansion. We further delineate a map of the three different

inflation modes of a thin-walled hydrogel balloon in the parameter space of P and Nv : equilibrium inflation ( P < P swell 
cr ),

delayed burst ( P swell 
cr ≤ P < P ins 

cr ) and instantaneous burst ( P ≥ P ins 
cr ). The delayed burst is counterintuitive and is even more

detrimental than the instantaneous burst because of its latent nature. 

Lastly, we extend our discussion to examine the delayed burst in thick hydrogel balloons by using finite element method.

We find that the delayed burst phenomenon becomes less pronounced for a thick balloon as the pressure window evoking

such a failure mode narrows down. Particularly, the delayed cavitation is predicted to become nearly irrelevant for a small

vacancy defect enclosed in the hydrogel material. We limit our scope within the geometry of spherical balloons, however, it

is believed that this research may also shed light on the delayed failure of other thin-walled hydrogel structures that find

extensive applications in soft actuators, soft robots, and biomedical devices. 
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Appendix A 

First, we show that any equilibrium state determined by Eq. (12) is as well located on the incompressible response curve.

For an arbitrary equilibrium state of the balloon, let us denote the volume ratio as 

J = 

ˆ J = 

ˆ λ3 (A1) 

inserting Eq. (23) into Eq. (12) gives, 

P 

kT / v 
= 

2 H 

R 

Nv ·
(
λ−1 

θ
− λ−7 

θ
ˆ λ6 

)
= 

2 

(
ˆ λH 

)
(

ˆ λR 

) Nv 
ˆ λ

( (
λθ

ˆ λ

)−1 

−
(

λθ

ˆ λ

)−7 
) 

(A2) 

which recovers Eq. (20) , namely the instantaneous response of a hydrogel balloon at a uniform initial swelling ratio ˆ λ.

Therefore, we have proved that any equilibrium state can also be achieved through a volume-conserving process at the

corresponding volume ratio J . Among all these equilibrium states, the critical pressure for unbounded swelling P swell 
cr corre-

sponds to a specific one, which is the equilibrium state at the highest water content J or the highest volume ratio C . 

As J increases from J 0 to J eq , the critical pressure for instant burst at the initial free-swelling state P ins 
cr is actually the

highest pressure on all the instant response curves at different values of J . Therefore, the critical pressure for instant burst

P ins 
cr is always greater than that for the unbounded swelling, i.e., P ins 

cr > P swell 
cr . 
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